## Tanja N Williamson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6051567/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Overall results and key findings on the use of UAV visible-color, multispectral, and thermal infrared imagery to map agricultural drainage pipes. Agricultural Water Management, 2020, 232, 106036.                                            | 2.4 | 37        |
| 2  | Estimation of Suspended-Sediment Concentration From Total Suspended Solids and Turbidity Data for<br>Kentucky, 1978-19951. Journal of the American Water Resources Association, 2011, 47, 739-749.                                             | 1.0 | 28        |
| 3  | Effects of a chaparral-to-grass conversion on soil physical and hydrologic properties after four decades. Geoderma, 2004, 123, 99-114.                                                                                                         | 2.3 | 26        |
| 4  | Classification of Ephemeral, Intermittent, and Perennial Stream Reaches Using a<br><scp>TOPMODEL</scp> â€Based Approach. Journal of the American Water Resources Association, 2015, 51,<br>1739-1759.                                          | 1.0 | 24        |
| 5  | Regolith Water in Zeroâ€Order Chaparral and Perennial Grass Watersheds Four Decades after<br>Vegetation Conversion. Vadose Zone Journal, 2004, 3, 1007-1016.                                                                                   | 1.3 | 20        |
| 6  | Stream Sediment Sources in Midwest Agricultural Basins with Land Retirement along Channel.<br>Journal of Environmental Quality, 2014, 43, 1624-1634.                                                                                           | 1.0 | 17        |
| 7  | Significance of Exchanging SSURGO and STATSGO Data When Modeling Hydrology in Diverse<br>Physiographic Terranes. Soil Science Society of America Journal, 2013, 77, 877-889.                                                                   | 1.2 | 13        |
| 8  | Sensitivity of the projected hydroclimatic environment of the Delaware River basin to formulation of potential evapotranspiration. Climatic Change, 2016, 139, 215-228.                                                                        | 1.7 | 12        |
| 9  | Monthly suspended-sediment apportionment for a western Lake Erie agricultural tributary. Journal of<br>Great Lakes Research, 2020, 46, 1307-1320.                                                                                              | 0.8 | 12        |
| 10 | Hydrologic modeling to examine the influence of the forestry reclamation approach and climate change on mineland hydrology. Science of the Total Environment, 2020, 743, 140605.                                                               | 3.9 | 7         |
| 11 | Nutrient and suspended-sediment concentrations in the Maumee River and tributaries during 2019 rain-induced fallow conditions. Journal of Great Lakes Research, 2021, 47, 1726-1736.                                                           | 0.8 | 7         |
| 12 | Sensitivity of streamflow simulation in the Delaware River Basin to forecasted land over change for 2030 and 2060. Hydrological Processes, 2019, 33, 115-129.                                                                                  | 1.1 | 6         |
| 13 | Identification of Stolen Rare Palm Trees by Soil Morphological and Mineralogical Properties. Journal of Forensic Sciences, 2002, 47, 190-194.                                                                                                  | 0.9 | 6         |
| 14 | Simulating Soil-Water Movement through Loess-Veneered Landscapes Using Nonconsilient Saturated<br>Hydraulic Conductivity Measurements. Soil Science Society of America Journal, 2014, 78, 1320-1331.                                           | 1.2 | 5         |
| 15 | Phosphorus sources, forms, and abundance as a function of streamflow and field conditions in a<br>Maumee River tributary, 2016–2019. Journal of Environmental Quality, 2023, 52, 492-507.                                                      | 1.0 | 5         |
| 16 | Reduced Soil Macropores and Forest Cover Reduce Warm‣eason Baseflow below Ecological<br>Thresholds in the Upper Delaware River Basin. Journal of the American Water Resources Association,<br>2019, 55, 1268-1287.                             | 1.0 | 4         |
| 17 | Pedogenesis–Terrain Links in Zeroâ€Order Watersheds after Chaparral to Grass Vegetation Conversion.<br>Soil Science Society of America Journal, 2006, 70, 2065-2074.                                                                           | 1.2 | 3         |
| 18 | The Robinson Forest environmental monitoring network: Longâ€ŧerm evaluation of streamflow and precipitation quantity and streamâ€water and bulk deposition chemistry in eastern Kentucky watersheds. Hvdrological Processes. 2021. 35. e14133. | 1.1 | 3         |

IF

CITATIONS

## # Article

| 19 VValer Quality and Natural Resources in the Green River Dasin., 2017, , . |
|------------------------------------------------------------------------------|
|------------------------------------------------------------------------------|