Martine Lizotte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6051303/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Overview paper: New insights into aerosol and climate in the Arctic. Atmospheric Chemistry and Physics, 2019, 19, 2527-2560.	4.9	134
2	lce-nucleating particles in Canadian Arctic sea-surface microlayer and bulk seawater. Atmospheric Chemistry and Physics, 2017, 17, 10583-10595.	4.9	78
3	Dimethyl sulfide in the summertime Arctic atmosphere: measurements and source sensitivity simulations. Atmospheric Chemistry and Physics, 2016, 16, 6665-6680.	4.9	66
4	Biological and physical processes influencing sea ice, underâ€ice algae, and dimethylsulfoniopropionate during spring in the Canadian Arctic Archipelago. Journal of Geophysical Research: Oceans, 2014, 119, 3746-3766.	2.6	57
5	Frequent ultrafine particle formation and growth in Canadian Arctic marine and coastal environments. Atmospheric Chemistry and Physics, 2017, 17, 13119-13138.	4.9	46
6	Macroscale patterns of the biological cycling of dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) in the Northwest Atlantic. Biogeochemistry, 2012, 110, 183-200.	3.5	40
7	Microbial dimethylsulfoniopropionate (DMSP) dynamics along a natural iron gradient in the northeast subarctic Pacific. Limnology and Oceanography, 2010, 55, 1614-1626.	3.1	32
8	Impact of ocean acidification on Arctic phytoplankton blooms and dimethyl sulfide concentration under simulated ice-free and under-ice conditions. Biogeosciences, 2017, 14, 2407-2427.	3.3	32
9	The impacts of ocean acidification on marine trace gases and the implications forÂatmospheric chemistry andÂclimate. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20190769.	2.1	31
10	Implications of sea-ice biogeochemistry for oceanic production and emissions of dimethyl sulfide in the Arctic. Biogeosciences, 2017, 14, 3129-3155.	3.3	30
11	Early response of the northeast subarctic Pacific plankton assemblage to volcanic ash fertilization. Limnology and Oceanography, 2014, 59, 55-67.	3.1	28
12	Overview and preliminary results of the Surface Ocean Aerosol Production (SOAP) campaign. Atmospheric Chemistry and Physics, 2017, 17, 13645-13667.	4.9	25
13	The distribution of methylated sulfur compounds, DMS and DMSP, in Canadian subarctic and Arctic marine waters during summer 2015. Biogeosciences, 2018, 15, 2449-2465.	3.3	25
14	Bacterial DMSP metabolism during the senescence of the spring diatom bloom in the Northwest Atlantic. Marine Ecology - Progress Series, 2008, 369, 1-11.	1.9	21
15	Dimethyl sulfide dynamics in first-year sea ice melt ponds in the Canadian Arctic Archipelago. Biogeosciences, 2018, 15, 3169-3188.	3.3	20
16	Dimethyl sulfide and its role in aerosol formation and growth in the Arctic summer – a modelling study. Atmospheric Chemistry and Physics, 2019, 19, 14455-14476.	4.9	19
17	Distribution of dimethylsulfide and dimethylsulfoniopropionate and its relation with phytoneuston in the surface microlayer of the western North Atlantic during summer. Biogeochemistry, 2009, 94, 243-254.	3.5	18
18	Under-ice microbial dimethylsulfoniopropionate metabolism during the melt period in the Canadian Arctic Archipelago. Marine Ecology - Progress Series, 2015, 524, 39-53.	1.9	18

MARTINE LIZOTTE

#	Article	IF	CITATIONS
19	DimethylsulfoniopropionateÂ(DMSP) and dimethyl sulfideÂ(DMS) cycling across contrasting biological hotspots of the New Zealand subtropical front. Ocean Science, 2017, 13, 961-982.	3.4	17
20	Rapid DMSP production by an Antarctic phytoplankton community exposed to natural surface irradiances in late spring. Aquatic Microbial Ecology, 2013, 71, 117-129.	1.8	17
21	Contrasted sensitivity of DMSP production to high light exposure in two Arctic under-ice blooms. Journal of Experimental Marine Biology and Ecology, 2016, 475, 38-48.	1.5	15
22	Impact of ocean acidification on phytoplankton assemblage, growth, and DMS production following Fe-dust additions in the NE Pacific high-nutrient, low-chlorophyll waters. Biogeosciences, 2016, 13, 1677-1692.	3.3	13
23	DMS emissions from the Arctic marginal ice zone. Elementa, 2021, 9, .	3.2	12
24	Iron-induced alterations of bacterial DMSP metabolism in the western subarctic Pacific during SEEDS-II. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 2889-2898.	1.4	9
25	Experimental assessment of the sensitivity of an estuarine phytoplankton fall bloom to acidification and warming. Biogeosciences, 2018, 15, 4883-4904.	3.3	9
26	Fate of dimethylsulfoniopropionate (DMSP) during the decline of the northwest Atlantic Ocean spring diatom bloom. Aquatic Microbial Ecology, 2008, 52, 159-173.	1.8	9
27	Contrasting effects of acidification and warming on dimethylsulfide concentrations during a temperate estuarine fall bloom mesocosm experiment. Biogeosciences, 2019, 16, 1167-1185.	3.3	8
28	Phytoplankton and dimethylsulfide dynamics atÂtwo contrasting Arctic ice edges. Biogeosciences, 2020, 17, 1557-1581.	3.3	7
29	Impacts of sectoral, regional, species, and day-specific emissions on air pollution and public health in Washington, DC. Elementa, 2021, 9, .	3.2	6
30	Upward transport of bottom-ice dimethyl sulfide during advanced melting of arctic first-year sea ice. Elementa, 2019, 7, .	3.2	5
31	The benefits to climate science of including early-career scientists as reviewers. Geoscience Communication, 2020, 3, 89-97.	0.9	5
32	Impact of anthropogenic pH perturbation on dimethyl sulfide cycling. Elementa, 2021, 9, .	3.2	2
33	Chapter 6.3 Dimethylsulfide (DMS) flux and DMS oxidation over the North Atlantic: Comparison of a top-down and a bottom-up approach. Developments in Environmental Science, 2007, 6, 661-675.	0.5	0