
Arturo A Keller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6051005/publications.pdf Version: 2024-02-01

ADTUDO A KELLED

#	Article	IF	CITATIONS
1	Stability and Aggregation of Metal Oxide Nanoparticles in Natural Aqueous Matrices. Environmental Science & Technology, 2010, 44, 1962-1967.	10.0	1,162
2	Global life cycle releases of engineered nanomaterials. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	1,097
3	Predicted Releases of Engineered Nanomaterials: From Global to Regional to Local. Environmental Science and Technology Letters, 2014, 1, 65-70.	8.7	669
4	Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. Chemical Engineering Journal, 2016, 286, 640-662.	12.7	612
5	Impacts of Metal Oxide Nanoparticles on Marine Phytoplankton. Environmental Science & Technology, 2010, 44, 7329-7334.	10.0	280
6	Comparative environmental fate and toxicity of copper nanomaterials. NanoImpact, 2017, 7, 28-40.	4.5	277
7	Emerging patterns for engineered nanomaterials in the environment: a review of fate and toxicity studies. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	269
8	Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) for dissolved metal ion removal. Water Research, 2015, 74, 47-57.	11.3	267
9	Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles. Journal of Hazardous Materials, 2011, 189, 556-563.	12.4	233
10	Aggregation, Dissolution, and Transformation of Copper Nanoparticles in Natural Waters. Environmental Science & Technology, 2015, 49, 2749-2756.	10.0	232
11	Role of morphology in the aggregation kinetics of ZnO nanoparticles. Water Research, 2010, 44, 2948-2956.	11.3	226
12	TiO2 Nanoparticles Are Phototoxic to Marine Phytoplankton. PLoS ONE, 2012, 7, e30321.	2.5	223
13	Clay Particles Destabilize Engineered Nanoparticles in Aqueous Environments. Environmental Science & Technology, 2012, 46, 7520-7526.	10.0	218
14	Influence of Extracellular Polymeric Substances on the Long-Term Fate, Dissolution, and Speciation of Copper-Based Nanoparticles. Environmental Science & Technology, 2014, 48, 12561-12568.	10.0	217
15	Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environmental Sciences: Processes and Impacts, 2015, 17, 177-185.	3.5	208
16	Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: Insight into the uptake mechanism. Journal of Hazardous Materials, 2012, 225-226, 131-138.	12.4	207
17	Assessing the Risk of Engineered Nanomaterials in the Environment: Development and Application of the nanoFate Model. Environmental Science & amp; Technology, 2017, 51, 5541-5551.	10.0	205
18	¹ H NMR and GC-MS Based Metabolomics Reveal Defense and Detoxification Mechanism of Cucumber Plant under Nano-Cu Stress. Environmental Science & Technology, 2016, 50, 2000-2010.	10.0	194

#	Article	IF	CITATIONS
19	Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks. Applied Energy, 2017, 205, 589-601.	10.1	192
20	Considerations of Environmentally Relevant Test Conditions for Improved Evaluation of Ecological Hazards of Engineered Nanomaterials. Environmental Science & Technology, 2016, 50, 6124-6145.	10.0	191
21	Estimating Potential Life Cycle Releases of Engineered Nanomaterials from Wastewater Treatment Plants. ACS Sustainable Chemistry and Engineering, 2014, 2, 1656-1665.	6.7	186
22	The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths. Science of the Total Environment, 2014, 487, 375-380.	8.0	181
23	Comparative analysis of energy intensity and carbon emissions in wastewater treatment in USA, Germany, China and South Africa. Applied Energy, 2016, 184, 873-881.	10.1	174
24	Metabolomics to Detect Response of Lettuce (<i>Lactuca sativa</i>) to Cu(OH) ₂ Nanopesticides: Oxidative Stress Response and Detoxification Mechanisms. Environmental Science & Technology, 2016, 50, 9697-9707.	10.0	170
25	Simultaneous removal of cadmium and nitrate in aqueous media by nanoscale zerovalent iron (nZVI) and Au doped nZVI particles. Water Research, 2014, 63, 102-111.	11.3	168
26	Metabolomics Reveals How Cucumber (<i>Cucumis sativus</i>) Reprograms Metabolites To Cope with Silver Ions and Silver Nanoparticle-Induced Oxidative Stress. Environmental Science & Technology, 2018, 52, 8016-8026.	10.0	165
27	Micromodel Observation of the Role of Oil Layers in Three-Phase Flow. Transport in Porous Media, 1997, 26, 277-297.	2.6	160
28	EDTA functionalized magnetic nanoparticle sorbents for cadmium and lead contaminated water treatment. Water Research, 2015, 80, 159-168.	11.3	158
29	Heteroaggregation of nanoparticles with biocolloids and geocolloids. Advances in Colloid and Interface Science, 2015, 226, 24-36.	14.7	156
30	Toxicity of Nano-Zero Valent Iron to Freshwater and Marine Organisms. PLoS ONE, 2012, 7, e43983.	2.5	150
31	Transport of colloids in saturated porous media: A pore-scale observation of the size exclusion effect and colloid acceleration. Water Resources Research, 2003, 39, .	4.2	138
32	The Role of Scale and Technology Maturity in Life Cycle Assessment of Emerging Technologies: A Case Study on Carbon Nanotubes. Journal of Industrial Ecology, 2015, 19, 51-60.	5.5	137
33	Pore-scale processes that control dispersion of colloids in saturated porous media. Water Resources Research, 2004, 40, .	4.2	136
34	A new insight on the core–shell structure of zerovalent iron nanoparticles and its application for Pb(II) sequestration. Journal of Hazardous Materials, 2013, 263, 685-693.	12.4	128
35	Heteroaggregation of engineered nanoparticles and kaolin clays in aqueous environments. Water Research, 2015, 80, 130-138.	11.3	128
36	Metal oxide nanomaterials in seawater: Linking physicochemical characteristics with biological response in sea urchin development. Journal of Hazardous Materials, 2011, 192, 1565-1571.	12.4	126

#	Article	IF	CITATIONS
37	Release of engineered nanomaterials from personal care products throughout their life cycle. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	124
38	Interactions between Algal Extracellular Polymeric Substances and Commercial TiO ₂ Nanoparticles in Aqueous Media. Environmental Science & Technology, 2016, 50, 12258-12265.	10.0	121
39	Release and detection of nanosized copper from a commercial antifouling paint. Water Research, 2016, 102, 374-382.	11.3	119
40	Pore-scale visualization of colloid straining and filtration in saturated porous media using micromodels. Water Resources Research, 2006, 42, .	4.2	114
41	Magnetic Permanently Confined Micelle Arrays for Treating Hydrophobic Organic Compound Contamination. Journal of the American Chemical Society, 2009, 131, 182-188.	13.7	113
42	Metabolomics Reveals Cu(OH) ₂ Nanopesticide-Activated Anti-oxidative Pathways and Decreased Beneficial Antioxidants in Spinach Leaves. Environmental Science & Technology, 2017, 51, 10184-10194.	10.0	113
43	Mobility of Capped Silver Nanoparticles under Environmentally Relevant Conditions. Environmental Science & Technology, 2012, 46, 6985-6991.	10.0	112
44	Environmental release, fate and ecotoxicological effects of manufactured ceria nanomaterials. Environmental Science: Nano, 2014, 1, 533-548.	4.3	110
45	Uptake, accumulation, and biotransformation of metal oxide nanoparticles by a marine suspension-feeder. Journal of Hazardous Materials, 2012, 225-226, 139-145.	12.4	109
46	A review of visualization techniques of biocolloid transport processes at the pore scale under saturated and unsaturated conditions. Advances in Water Resources, 2007, 30, 1392-1407.	3.8	104
47	Species Sensitivity Distributions for Engineered Nanomaterials. Environmental Science & Technology, 2015, 49, 5753-5759.	10.0	102
48	Free riding in voluntary environmental programs: The case of the U.S. EPA WasteWise program. Policy Sciences, 2005, 38, 91-106.	2.8	101
49	Calculation of water footprint of the iron and steel industry: a case study in Eastern China. Journal of Cleaner Production, 2015, 92, 274-281.	9.3	101
50	ZnO nanoparticle fate in soil and zinc bioaccumulation in corn plants (Zea mays) influenced by alginate. Environmental Sciences: Processes and Impacts, 2013, 15, 260-266.	3.5	99
51	Environmental Stresses Increase Photosynthetic Disruption by Metal Oxide Nanomaterials in a Soil-Grown Plant. ACS Nano, 2015, 9, 11737-11749.	14.6	96
52	Transport of colloids in unsaturated porous media: A pore-scale observation of processes during the dissolution of air-water interface. Water Resources Research, 2003, 39, .	4.2	94
53	Long-term colloidal stability and metal leaching of single wall carbon nanotubes: Effect of temperature and extracellular polymeric substances. Water Research, 2014, 49, 236-250.	11.3	93
54	Competitive removal of Pb2+ and malachite green from water by magnetic phosphate nanocomposites. Water Research, 2019, 150, 442-451.	11.3	92

#	Article	IF	CITATIONS
55	Interactions, Transformations, and Bioavailability of Nano-Copper Exposed to Root Exudates. Environmental Science & Technology, 2017, 51, 9774-9783.	10.0	90
56	Early breakthrough of colloids and bacteriophage MS2 in a water-saturated sand column. Water Resources Research, 2004, 40, .	4.2	89
57	Persistence of commercial nanoscaled zero-valent iron (nZVI) and by-products. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	84
58	Influence of Material Properties on TiO2 Nanoparticle Agglomeration. PLoS ONE, 2013, 8, e81239.	2.5	82
59	Comparative Metabolic Response between Cucumber (<i>Cucumis sativus</i>) and Corn (<i>Zea) Tj ETQq1 1 0. 66, 6628-6636.</i>	784314 rg 5.2	BT /Overlock 81
60	Metabolomics Reveals the Molecular Mechanisms of Copper Induced Cucumber Leaf (<i>Cucumis) Tj ETQq0 0 0</i>	rgBT /Ove 10.0	rlock 10 Tf 50
61	Detection of nanoparticles in edible plant tissues exposed to nano-copper using single-particle ICP-MS. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	77
62	Accumulation and toxicity of metal oxide nanoparticles in a soft-sediment estuarine amphipod. Aquatic Toxicology, 2013, 142-143, 441-446.	4.0	73
63	Magnetic Nanoparticle Adsorbents for Emerging Organic Contaminants. ACS Sustainable Chemistry and Engineering, 2013, 1, 731-736.	6.7	73
64	Occurrence and risk assessment of emerging contaminants in a water reclamation and ecological reuse project. Science of the Total Environment, 2020, 744, 140977.	8.0	73
65	Particle-Size Dependent Sorption and Desorption of Pesticides within a Waterâ^'Soilâ^'Nonionic Surfactant System. Environmental Science & Technology, 2008, 42, 3381-3387.	10.0	72
66	Response at Genetic, Metabolic, and Physiological Levels of Maize (<i>Zea mays</i>) Exposed to a Cu(OH) ₂ Nanopesticide. ACS Sustainable Chemistry and Engineering, 2017, 5, 8294-8301.	6.7	70
67	Simultaneous removal of PAHs and metal contaminants from water using magnetic nanoparticle adsorbents. Science of the Total Environment, 2016, 571, 1029-1036.	8.0	69
68	The University of California Center for the Environmental Implications of Nanotechnology. Environmental Science & Technology, 2009, 43, 6453-6457.	10.0	67
69	1H NMR and GC–MS based metabolomics reveal nano-Cu altered cucumber (Cucumis sativus) fruit nutritional supply. Plant Physiology and Biochemistry, 2017, 110, 138-146.	5.8	67
70	Rapid Life-Cycle Impact Screening Using Artificial Neural Networks. Environmental Science & Technology, 2017, 51, 10777-10785.	10.0	67
71	Heteroaggregation of CeO2 and TiO2 engineered nanoparticles in the aqueous phase: Application of turbiscan stability index and fluorescence excitation-emission matrix (EEM) spectra. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 533, 9-19.	4.7	66
72	Stability, metal leaching, photoactivity and toxicity in freshwater systems of commercial single wall carbon nanotubes. Water Research, 2013, 47, 4074-4085.	11.3	63

#	Article	IF	CITATIONS
73	Effects and Implications of Trophic Transfer and Accumulation of CeO ₂ Nanoparticles in a Marine Mussel. Environmental Science & amp; Technology, 2014, 48, 1517-1524.	10.0	62
74	Removal of Arsenic and Phosphate from Aqueous Solution by Metal (Hydr-)oxide Coated Sand. ACS Sustainable Chemistry and Engineering, 2014, 2, 1128-1138.	6.7	62
75	Antioxidant response of cucumber (Cucumis sativus) exposed to nano copper pesticide: Quantitative determination via LC-MS/MS. Food Chemistry, 2019, 270, 47-52.	8.2	61
76	GC-TOF-MS based metabolomics and ICP-MS based metallomics of cucumber (Cucumis sativus) fruits reveal alteration of metabolites profile and biological pathway disruption induced by nano copper. Environmental Science: Nano, 2016, 3, 1114-1123.	4.3	58
77	Dynamic Model for the Stocks and Release Flows of Engineered Nanomaterials. Environmental Science & Technology, 2017, 51, 12424-12433.	10.0	58
78	Intermittent filtration of bacteria and colloids in porous media. Water Resources Research, 2005, 41, .	4.2	57
79	DNAPL Characterization Methods and Approaches, Part 1: Performance Comparisons. Ground Water Monitoring and Remediation, 2001, 21, 109-123.	0.8	56
80	Environmental Feedbacks and Engineered Nanoparticles: Mitigation of Silver Nanoparticle Toxicity to Chlamydomonas reinhardtii by Algal-Produced Organic Compounds. PLoS ONE, 2013, 8, e74456.	2.5	56
81	Low Concentrations of Silver Nanoparticles and Silver Ions Perturb the Antioxidant Defense System and Nitrogen Metabolism in N ₂ -Fixing Cyanobacteria. Environmental Science & Technology, 2020, 54, 15996-16005.	10.0	56
82	Quantifying the Dynamics of Polystyrene Microplastics UV-Aging Process. Environmental Science and Technology Letters, 2022, 9, 50-56.	8.7	56
83	Incidence and persistence of silver nanoparticles throughout the wastewater treatment process. Water Research, 2019, 156, 188-198.	11.3	55
84	C60 Fullerols Enhance Copper Toxicity and Alter the Leaf Metabolite and Protein Profile in Cucumber. Environmental Science & Technology, 2019, 53, 2171-2180.	10.0	53
85	Activation of antioxidant and detoxification gene expression in cucumber plants exposed to a Cu(OH) ₂ nanopesticide. Environmental Science: Nano, 2017, 4, 1750-1760.	4.3	52
86	How do stream organisms respond to, and influence, the concentration of titanium dioxide nanoparticles? A mesocosm study with algae and herbivores. Environmental Toxicology and Chemistry, 2012, 31, 2414-2422.	4.3	51
87	Comparative photoactivity of CeO2, γ-Fe2O3, TiO2 and ZnO in various aqueous systems. Applied Catalysis B: Environmental, 2011, 102, 600-607.	20.2	50
88	Direct Synthesis of Novel and Reactive Sulfide-modified Nano Iron through Nanoparticle Seeding for Improved Cadmium-Contaminated Water Treatment. Scientific Reports, 2016, 6, 24358.	3.3	50
89	Photochlorination-induced transformation of graphene oxide: Mechanism and environmental fate. Water Research, 2017, 124, 372-380.	11.3	50
90	Omics to address the opportunities and challenges of nanotechnology in agriculture. Critical Reviews in Environmental Science and Technology, 2021, 51, 2595-2636.	12.8	50

#	Article	IF	CITATIONS
91	Dispersion Stability and Electrokinetic Properties of Intrinsic Plutonium Colloids: Implications for Subsurface Transport. Environmental Science & amp; Technology, 2013, 47, 5626-5634.	10.0	49
92	Influence of Phytoplankton on Fate and Effects of Modified Zerovalent Iron Nanoparticles. Environmental Science & Technology, 2016, 50, 5597-5605.	10.0	49
93	Application of metabolomics to assess the impact of Cu(OH)2 nanopesticide on the nutritional value of lettuce (Lactuca sativa): Enhanced Cu intake and reduced antioxidants. NanoImpact, 2016, 3-4, 58-66.	4.5	47
94	Minimizing impacts of land use change on ecosystem services using multi-criteria heuristic analysis. Journal of Environmental Management, 2015, 156, 23-30.	7.8	46
95	Metabolomic Responses of Green Alga <i>Chlamydomonas reinhardtii</i> Exposed to Sublethal Concentrations of Inorganic and Methylmercury. Environmental Science & Technology, 2021, 55, 3876-3887.	10.0	46
96	Partitioning of hydrophobic organic compounds within soil–water–surfactant systems. Water Research, 2008, 42, 2093-2101.	11.3	45
97	Dissolution and Aggregation of Metal Oxide Nanoparticles in Root Exudates and Soil Leachate: Implications for Nanoagrochemical Application. Environmental Science & Technology, 2021, 55, 13443-13451.	10.0	45
98	Natural organic matter removal by adsorption onto magnetic permanently confined micelle arrays. Journal of Hazardous Materials, 2011, 194, 156-161.	12.4	44
99	Influence of nanoparticle doping on the colloidal stability and toxicity of copper oxide nanoparticles in synthetic and natural waters. Water Research, 2018, 132, 12-22.	11.3	44
100	Increased Mobility of Metal Oxide Nanoparticles Due to Photo and Thermal Induced Disagglomeration. PLoS ONE, 2012, 7, e37363.	2.5	44
101	Developmental effects of two different copper oxide nanomaterials in sea urchin (<i>Lytechinus) Tj ETQq1 1 0.78</i>	34314 rgB	T /Qverlock]
102	Photoinduced Disaggregation of TiO2 Nanoparticles Enables Transdermal Penetration. PLoS ONE, 2012, 7, e48719.	2.5	42
103	Nano and traditional copper and zinc antifouling coatings: metal release and impact on marine sessile invertebrate communities. Journal of Nanoparticle Research, 2020, 22, 1.	1.9	41
104	Quantitative analysis of changes in amino acids levels for cucumber (Cucumis sativus) exposed to nano copper. NanoImpact, 2018, 12, 9-17.	4.5	40
105	Effects of nitrate on the treatment of lead contaminated groundwater by nanoscale zerovalent iron. Journal of Hazardous Materials, 2014, 280, 504-513.	12.4	39
106	Understanding parameter sensitivity and its management implications in watershed-scale water quality modeling. Water Resources Research, 2006, 42, .	4.2	38
107	Magnetic pollen grains as sorbents for facile removal of organic pollutants in aqueous media. Journal of Hazardous Materials, 2011, 194, 53-61.	12.4	37
108	Effects of pH, ionic strength and humic acid on the removal of TiO2 nanoparticles from aqueous phase by coagulation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 450, 161-165.	4.7	37

#	Article	IF	CITATIONS
109	Proteomic, gene and metabolite characterization reveal the uptake and toxicity mechanisms of cadmium sulfide quantum dots in soybean plants. Environmental Science: Nano, 2019, 6, 3010-3026.	4.3	37
110	Impacts of Silver Nanoparticles on a Natural Estuarine Plankton Community. Environmental Science & Technology, 2015, 49, 12968-12974.	10.0	36
111	Incidence of metal-based nanoparticles in the conventional wastewater treatment process. Water Research, 2021, 189, 116603.	11.3	36
112	Effects of dominant material properties on the stability and transport of TiO ₂ nanoparticles and carbon nanotubes in aquatic environments: from synthesis to fate. Environmental Sciences: Processes and Impacts, 2013, 15, 169-189.	3.5	35
113	Simulation tool for assessing the release and environmental distribution of nanomaterials. Beilstein Journal of Nanotechnology, 2015, 6, 938-951.	2.8	35
114	Removal of heavy metals from aqueous solution using a novel composite of recycled materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 425, 6-14.	4.7	34
115	Influence of light wavelength on the photoactivity, physicochemical transformation, and fate of graphene oxide in aqueous media. Environmental Science: Nano, 2018, 5, 2590-2603.	4.3	34
116	Measurement of Henry's law constant for methyl <i>tert</i> â€butyl ether using solidâ€phase microextraction. Environmental Toxicology and Chemistry, 2001, 20, 1625-1629.	4.3	33
117	Natural Organic Matter Removal by Adsorption onto Carbonaceous Nanoparticles and Coagulation. Journal of Environmental Engineering, ASCE, 2010, 136, 1075-1081.	1.4	33
118	Microscopic and Spectroscopic Methods Applied to the Measurements of Nanoparticles in the Environment. Applied Spectroscopy Reviews, 2012, 47, 180-206.	6.7	33
119	Photosynthetic efficiency predicts toxic effects of metal nanomaterials in phytoplankton. Aquatic Toxicology, 2017, 183, 85-93.	4.0	33
120	Adsorption of perchlorate and other oxyanions onto magnetic permanently confined micelle arrays (Mag-PCMAs). Water Research, 2012, 46, 635-644.	11.3	32
121	Implementation of a Multidisciplinary Approach to Solve Complex Nano EHS Problems by the UC Center for the Environmental Implications of Nanotechnology. Small, 2013, 9, 1428-1443.	10.0	32
122	Metabolomics for early detection of stress in freshwater alga Poterioochromonas malhamensis exposed to silver nanoparticles. Scientific Reports, 2020, 10, 20563.	3.3	32
123	Fast Multielement Quantification of Nanoparticles in Wastewater and Sludge Using Single-Particle ICP-MS. ACS ES&T Water, 2021, 1, 205-213.	4.6	32
124	Gravity-driven transport of three engineered nanomaterials in unsaturated soils and their effects on soil pH and nutrient release. Water Research, 2016, 98, 250-260.	11.3	31
125	Transport of colloids in unsaturated porous media: Explaining large-scale behavior based on pore-scale mechanisms. Water Resources Research, 2004, 40, .	4.2	30
126	DNAPL Characterization Methods and Approaches, Part 2: Cost Comparisons. Ground Water Monitoring and Remediation, 2002, 22, 46-61.	0.8	29

#	Article	IF	CITATIONS
127	Alginate modifies the physiological impact of CeO2 nanoparticles in corn seedlings cultivated in soil. Journal of Environmental Sciences, 2014, 26, 382-389.	6.1	29
128	Attenuation Coefficients for Water Quality Trading. Environmental Science & Technology, 2014, 48, 6788-6794.	10.0	28
129	Short Total Synthesis of [¹⁵ N ₅]-Cylindrospermopsins from ¹⁵ NH ₄ Cl Enables Precise Quantification of Freshwater Cyanobacterial Contamination. Journal of the American Chemical Society, 2018, 140, 6027-6032.	13.7	28
130	Ultra-High-Precision, in-vivo Pharmacokinetic Measurements Highlight the Need for and a Route Toward More Highly Personalized Medicine. Frontiers in Molecular Biosciences, 2019, 6, 69.	3.5	28
131	Surface coating determines the response of soybean plants to cadmium sulfide quantum dots. NanoImpact, 2019, 14, 100151.	4.5	28
132	MoS ₂ Nanosheets–Cyanobacteria Interaction: Reprogrammed Carbon and Nitrogen Metabolism. ACS Nano, 2021, 15, 16344-16356.	14.6	28
133	Unraveling Metabolic and Proteomic Features in Soybean Plants in Response to Copper Hydroxide Nanowires Compared to a Commercial Fertilizer. Environmental Science & Technology, 2021, 55, 13477-13489.	10.0	27
134	Hydrophobic Hollow Fiber Membranes for Treating MTBE-Contaminated Water. Environmental Science & Technology, 2001, 35, 1875-1879.	10.0	26
135	Uncertainty assessment in watershedâ€scale water quality modeling and management: 1. Framework and application of generalized likelihood uncertainty estimation (GLUE) approach. Water Resources Research, 2007, 43, .	4.2	26
136	Mass Transfer of Ozone Using a Microporous Diffuser Reactor System. Ozone: Science and Engineering, 2005, 27, 45-51.	2.5	25
137	Investigation of Two Magnetic Permanently Confined Micelle Array Sorbents Using Nonionic and Cationic Surfactants for the Removal of PAHs and Pesticides from Aqueous Media. Water, Air, and Soil Pollution, 2012, 223, 3647-3655.	2.4	25
138	Conventional and nano-copper pesticides are equally toxic to the estuarine amphipod Leptocheirus plumulosus. Aquatic Toxicology, 2020, 224, 105481.	4.0	25
139	Remediation of Cadmium Toxicity by Sulfidized Nano-Iron: The Importance of Organic Material. ACS Nano, 2017, 11, 10558-10567.	14.6	24
140	Interactions between polybrominated diphenyl ethers (PBDEs) and TiO2 nanoparticle in artificial and natural waters. Water Research, 2018, 146, 98-108.	11.3	24
141	Highly efficient bacterial removal and disinfection by magnetic barium phosphate nanoflakes with embedded iron oxide nanoparticles. Environmental Science: Nano, 2018, 5, 1341-1349.	4.3	23
142	Multi-technique approach to study the stability of silver nanoparticles at predicted environmental concentrations in wastewater. Water Research, 2019, 166, 115072.	11.3	23
143	Novel Machine Learning-Based Energy Consumption Model of Wastewater Treatment Plants. ACS ES&T Water, 2021, 1, 2531-2540.	4.6	23
144	Impact of Carbon Storage Through Restoration of Drylands on the Global Carbon Cycle. Environmental Management, 1998, 22, 757-766.	2.7	22

#	Article	IF	CITATIONS
145	Soil particle-size dependent partitioning behavior of pesticides within water–soil–cationic surfactant systems. Water Research, 2008, 42, 3781-3788.	11.3	22
146	Variation in regional risk of engineered nanoparticles: nanoTiO ₂ as a case study. Environmental Science: Nano, 2019, 6, 444-455.	4.3	22
147	Comparison of the colloidal stability, mobility, and performance of nanoscale zerovalent iron and sulfidated derivatives. Journal of Hazardous Materials, 2020, 396, 122691.	12.4	22
148	A stochastic analysis of steady state two-phase flow in heterogeneous media. Water Resources Research, 2005, 41, .	4.2	21
149	Stochastic Watershed Water Quality Simulation for TMDL Development – A Case Study in the Newport Bay Watershed ¹ . Journal of the American Water Resources Association, 2008, 44, 1397-1410.	2.4	21
150	Drilling into the Metabolomics to Enhance Insight on Corn and Wheat Responses to Molybdenum Trioxide Nanoparticles. Environmental Science & Technology, 2021, 55, 13452-13464.	10.0	21
151	Investigating the Energy-Water Usage Efficiency of the Reuse of Treated Municipal Wastewater for Artificial Groundwater Recharge. Environmental Science & Technology, 2016, 50, 2044-2053.	10.0	20
152	Linking Exposure and Kinetic Bioaccumulation Models for Metallic Engineered Nanomaterials in Freshwater Ecosystems. ACS Sustainable Chemistry and Engineering, 2018, 6, 12684-12694.	6.7	19
153	Magnesium Oxide Nanomaterial, an Alternative for Commercial Copper Bactericides: Field-Scale Tomato Bacterial Spot Disease Management and Total and Bioavailable Metal Accumulation in Soil. Environmental Science & Technology, 2021, 55, 13561-13570.	10.0	19
154	Effect of spreading coefficient on three-phase relative permeability of nonaqueous phase liquids. Water Resources Research, 2003, 39, .	4.2	17
155	DETERMINING CRITICAL WATER QUALITY CONDITIONS FOR INORGANIC NITROGEN IN DRY, SEMI-URBANIZED WATERSHEDS. Journal of the American Water Resources Association, 2004, 40, 721-735.	2.4	16
156	Isothermal titration microcalorimetry to determine the thermodynamics of metal ion removal by magnetic nanoparticle sorbents. Environmental Science: Nano, 2016, 3, 1206-1214.	4.3	16
157	Effective water disinfection using magnetic barium phosphate nanoflakes loaded with Ag nanoparticles. Journal of Cleaner Production, 2019, 218, 173-182.	9.3	16
158	Direct Potable Reuse: Are We Ready? A Review of Technological, Economic, and Environmental Considerations. ACS ES&T Engineering, 2022, 2, 273-291.	7.6	16
159	Adsorption of hydrophobic organic compounds onto a hydrophobic carbonaceous geosorbent in the presence of surfactants. Environmental Toxicology and Chemistry, 2008, 27, 1237-1243.	4.3	15
160	Optimization of porous structure of superparamagnetic nanoparticle adsorbents for higher and faster removal of emerging organic contaminants and PAHs. Environmental Science: Water Research and Technology, 2016, 2, 521-528.	2.4	15
161	OrganoRelease $\hat{a} \in A$ framework for modeling the release of organic chemicals from the use and post-use of consumer products. Environmental Pollution, 2018, 234, 751-761.	7.5	15
162	ChemFate: A fate and transport modeling framework for evaluating radically different chemicals under comparable conditions. Chemosphere, 2020, 255, 126897.	8.2	15

#	Article	IF	CITATIONS
163	Versailles project on advanced materials and standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles. Nanoscale, 2022, 14, 4690-4704.	5.6	15
164	Shaping Durum Wheat for the Future: Gene Expression Analyses and Metabolites Profiling Support the Contribution of BCAT Genes to Drought Stress Response. Frontiers in Plant Science, 2020, 11, 891.	3.6	14
165	Giving credit to reforestation for water quality benefits. PLoS ONE, 2019, 14, e0217756.	2.5	13
166	Single particle ICP-MS and GC-MS provide a new insight into the formation mechanisms during the green synthesis of AgNPs. New Journal of Chemistry, 2019, 43, 3946-3955.	2.8	13
167	Management of Urban Road Runoff Containing PAHs: Probabilistic Modeling and Its Application in Beijing, China ¹ . Journal of the American Water Resources Association, 2009, 45, 1009-1018.	2.4	12
168	Projection of California's Future Freshwater Requirements for Power Generation. Energy and Environment, 2010, 21, 1-20.	4.6	12
169	Sensitivity of nitrate concentrationâ€discharge patterns to soil nitrate distribution and drainage properties in the vertical dimension. Hydrological Processes, 2020, 34, 2477-2493.	2.6	12
170	Accelerating the pace of ecotoxicological assessment using artificial intelligence. Ambio, 2022, 51, 598-610.	5.5	12
171	A stochastic analysis of transient two-phase flow in heterogeneous porous media. Water Resources Research, 2006, 42, .	4.2	11
172	Modeling human health characterization factors for indoor nanomaterial emissions in life cycle assessment: a case-study of titanium dioxide. Environmental Science: Nano, 2017, 4, 1705-1721.	4.3	11
173	Environmental tradeoffs in municipal wastewater treatment plant upgrade: a life cycle perspective. Environmental Science and Pollution Research, 2021, 28, 34913-34923.	5.3	11
174	Ecosystem Protection, Integrated Management and Infrastructure are Vital for Improving Water Quality in Africa. Environmental Science & Technology, 2012, 46, 4699-4700.	10.0	10
175	Metabolomic Response of Early-Stage Wheat (Triticum aestivum) to Surfactant-Aided Foliar Application of Copper Hydroxide and Molybdenum Trioxide Nanoparticles. Nanomaterials, 2021, 11, 3073.	4.1	10
176	Uncertainty assessment in watershedâ€scale water quality modeling and management: 2. Management objectives constrained analysis of uncertainty (MOCAU). Water Resources Research, 2007, 43, .	4.2	9
177	Analytical modeling of polycyclic aromatic hydrocarbon loading and transport via road runoff in an urban region of Beijing, China. Water Resources Research, 2009, 45, .	4.2	9
178	Successive removal of E. coli and a mixture of Pb2+ and malachite green from water via magnetic iron oxide/phosphate nanocomposites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 578, 123598.	4.7	9
179	Application of ferrate for the treatment of metal-sulfide. Journal of Environmental Management, 2013, 116, 95-100.	7.8	8
180	COVID-19 Treatment Agents: Do They Pose an Environmental Risk?. ACS ES&T Water, 2021, 1, 1555-1565.	4.6	8

#	Article	IF	CITATIONS
181	Stochastic analysis of transient three-phase flow in heterogeneous porous media. Stochastic Environmental Research and Risk Assessment, 2009, 23, 93-109.	4.0	7
182	Evidence of Indoor Dust Acting as Carrier for Metal-Based Nanoparticles: A Study of Exposure and Oxidative Risks. Environmental Science and Technology Letters, 2022, 9, 431-438.	8.7	7
183	Screening ecological risk of pesticides and emerging contaminants under data limited conditions – Case study modeling urban and agricultural watersheds with OrganoFate. Environmental Pollution, 2021, 288, 117662.	7.5	6
184	Remediation of heavy metal contamination of sediments and soils using ligand-coated dense nanoparticles. PLoS ONE, 2020, 15, e0239137.	2.5	6
185	Remediation of MTBE-Contaminated Water and Soil. , 1999, 10, 55-68.		5
186	Complex NAPL Site Characterization Using Fluorescence Part 3: Detection Capabilities for Specific Excitation Sources. Soil and Sediment Contamination, 2004, 13, 135-148.	1.9	5
187	Complex NAPL Site Characterization Using Fluorescence Part 2: Analysis of Soil Matrix Effects on the Excitation/Emission Matrix. Soil and Sediment Contamination, 2004, 13, 119-134.	1.9	5
188	Evaluation of the Impact of and Management Strategies for Diazinon and Chlorpyrifos in Newport Bay. , 2005, , 1158.		5
189	Redesigning Water Disinfection Using Recyclable Nanomaterials and Metal Ions: Evaluation with <i>Escherichia coli</i> . ACS ES&T Water, 2021, 1, 185-194.	4.6	5
190	Metabolic alterations in alga <i>Chlamydomonas reinhardtii</i> exposed to nTiO ₂ materials. Environmental Science: Nano, 2022, 9, 2922-2938.	4.3	5
191	Novel disinfection method for toxic cyanobacteria (Oscillatoria tenuis) and simultaneous removal of cyanotoxins aided by recyclable magnetic nanoparticles. Journal of Environmental Chemical Engineering, 2021, 9, 106589.	6.7	4
192	AgInput: An Agricultural Nutrient and Pesticide Source Model. Environmental Modeling and Assessment, 2009, 14, 391-403.	2.2	2
193	Regional multimedia distribution of nanomaterials and associated exposures: A software platform. , 2014, , .		2
194	Nanotechnology Research with Sustainability Considerations. ACS Sustainable Chemistry and Engineering, 2018, 6, 15876-15876.	6.7	2
195	Complex NAPL Site Characterization Using Fluorescence Part 3: Detection Capabilities for Specific Excitation Sources. Journal of Soil Contamination, 2004, 13, 135-148.	0.5	2
196	ENVIRONMENTAL APPLICATIONS OF NANOTECHNOLOGY. , 2014, , .		1
197	Innovation in procedures for human and ecological health risk assessment of engineered nanomaterials. , 2019, , 185-208.		1
198	Comments in Response to " <i>DyeLIFâ,,¢: A New Directâ€Push Laserâ€Induced Fluorescence Sensor System for Chlorinated Solvent DNAPL and Other Nonâ€Naturally Fluorescing NAPLsâ€</i> . Ground Water Monitoring and Remediation, 2019, 39, 73-74.	0.8	1

#	Article	IF	CITATIONS
199	Complex NAPL Site Characterization Using Fluorescence Part 2: Analysis of Soil Matrix Effects on the Excitation/Emission Matrix. Journal of Soil Contamination, 2004, 13, 119-134.	0.5	1
200	A METHOD TO CHARACTERIZE MATERIALS TO BE USED ON OLEOPHILIC SKIMMERS1. International Oil Spill Conference Proceedings, 2005, 2005, 837-840.	0.1	1
201	Beyond Methyl tert-Butyl Ether: Applying the Precautionary Principle to Gasoline Oxygenates. ACS Symposium Series, 2001, , 125-136.	0.5	Ο
202	Hollow Fiber Membranes and Spray Aeration to Remove MTBE, DNAPLS, and Other Recalcitrant Compounds from Soils and Groundwater. Soil and Sediment Contamination, 2002, 11, 436-436.	1.9	0
203	Engineered nanomaterials for water treatment. , 2021, , .		Ο
204	Removal of MS-2 Viruses with Recyclable Magnetic Nanoparticles Coated with Metal Ions. ACS ES&T Water, 0, , .	4.6	0