Gitti Frey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6050908/publications.pdf Version: 2024-02-01

CITTI FDEV

#	Article	IF	CITATIONS
1	Universal electrode for ambipolar charge injection in organic electronic devices. Materials Horizons, 2022, 9, 2138-2146.	12.2	3
2	Blends of polymer semiconductor and polymer electrolyte for mixed ionic and electronic conductivity. Journal of Materials Chemistry C, 2021, 9, 7765-7777.	5.5	4
3	Bridging the thermodynamics and kinetics of temperature-induced morphology evolution in polymer/fullerene organic solar cell bulk heterojunction. Materials Horizons, 2021, 8, 1272-1285.	12.2	21
4	Tuning Contact Resistance in Topâ€Contact <i>p</i> â€Type and <i>n</i> â€Type Organic Field Effect Transistors by Selfâ€Generated Interlayers. Advanced Functional Materials, 2020, 30, 1805617.	14.9	16
5	Tuning Intra and Intermolecular Interactions for Balanced Hole and Electron Transport in Semiconducting Polymers. Chemistry of Materials, 2020, 32, 7338-7346.	6.7	24
6	One-step processing of multilayers in organic solar cells. Journal of Materials Chemistry C, 2020, 8, 8992-8998.	5.5	7
7	Toward Fast Screening of Organic Solar Cell Blends. Advanced Science, 2020, 7, 2000960.	11.2	15
8	Enhancing P3HT/PCBM blend stability by thermal crosslinking using poly(3-hexylthiophene)-S,S-dioxide. Journal of Materials Chemistry C, 2020, 8, 7698-7707.	5.5	12
9	Little probe, big data. Nature Materials, 2019, 18, 776-777.	27.5	3
10	Fully Solutionâ€Processed Photonic Structures from Inorganic/Organic Molecular Hybrid Materials and Commodity Polymers. Advanced Functional Materials, 2019, 29, 1808152.	14.9	14
11	Augmenting n-Type Performance of Ambipolar Top-Contact Organic Thin-Film Transistors by Self-Generated Interlayers. Chemistry of Materials, 2019, 31, 7046-7053.	6.7	13
12	Nanocomposite of nickel oxide nanoparticles and polyethylene oxide as printable hole transport layer for organic solar cells. Sustainable Energy and Fuels, 2019, 3, 1418-1426.	4.9	31
13	Atomic layer deposition of ZnO electron transporting layers directly onto the active layer of organic solar cells. Organic Electronics, 2019, 64, 37-46.	2.6	28
14	Correlating the effective work function at buried organic/metal interfaces with organic solar cell characteristics. Journal of Materials Chemistry C, 2018, 6, 8060-8068.	5.5	10
15	Interlayers Selfâ€Generated by Additive–Metal Interactions in Organic Electronic Devices. Advanced Materials, 2018, 30, e1706803.	21.0	11
16	Morphology visualization of P3HT:Fullerene blends by using subsurface atomic layer deposition. Organic Electronics, 2017, 49, 234-241.	2.6	16
17	Dynamics of Additive Migration to Form Cathodic Interlayers in Organic Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 29889-29900.	8.0	10
18	Directed migration of additives to form top interlayers in polymer light emitting diodes. Journal of Materials Chemistry C, 2017, 5, 12744-12751.	5.5	8

Gitti Frey

#	Article	IF	CITATIONS
19	Mechanisms for Spontaneous Generation of Interlayers in Organic Solar Cells. Chemistry of Materials, 2016, 28, 8851-8870.	6.7	21
20	Self-assembled block copolymer templates for atomic layer deposition: The effect of processing solvent. Polymer, 2016, 105, 214-220.	3.8	3
21	Spontaneous generation of interlayers in OPVs with silver cathodes: enhancing Voc and lifetime. Journal of Materials Chemistry C, 2016, 4, 1821-1828.	5.5	22
22	Mechanism of Metal Oxide Deposition from Atomic Layer Deposition inside Nonreactive Polymer Matrices: Effects of Polymer Crystallinity and Temperature. Chemistry of Materials, 2016, 28, 2668-2676.	6.7	27
23	Chemical Composition of Additives That Spontaneously Form Cathode Interlayers in OPVs. Langmuir, 2015, 31, 6721-6728.	3.5	9
24	Hexagonal patterns in thin films: Experiments and modeling. Extreme Mechanics Letters, 2015, 2, 65-71.	4.1	4
25	Harnessing ALD to directly map the morphology of organic photovoltaic bulk heterojunctions. Solar Energy Materials and Solar Cells, 2015, 143, 280-283.	6.2	17
26	Plasmonic nanoparticle incorporation into inverted hybrid organic–inorganic solar cells. Organic Electronics, 2015, 23, 144-150.	2.6	12
27	The effect of thermal annealing on additive migration to the organic/metal interface in OPVs. , 2015, , .		2
28	Directing Hybrid Structures by Combining Self-Assembly of Functional Block Copolymers and Atomic Layer Deposition: A Demonstration on Hybrid Photovoltaics. Langmuir, 2015, 31, 12762-12769.	3.5	28
29	Understanding and Promoting Molecular Interactions and Charge Transfer in Dye-Mediated Hybrid Photovoltaic Materials. Journal of Physical Chemistry C, 2014, 118, 25374-25391.	3.1	5
30	Free standing silica thin films with highly ordered perpendicular nanopores. RSC Advances, 2014, 4, 7627-7633.	3.6	15
31	Spontaneous interlayer formation in OPVs by additive migration due to additive–metal interactions. Journal of Materials Chemistry A, 2014, 2, 16746-16754.	10.3	25
32	Controlling morphology and charge transfer in ZnO/polythiophene photovoltaic films. Journal of Materials Chemistry C, 2014, 2, 4167-4176.	5.5	10
33	Atomic layer deposition of zinc oxide onto and into P3HT for hybrid photovoltaics. Journal of Materials Chemistry C, 2014, 2, 8903-8910.	5.5	41
34	Thermal metal deposition induces segregation in polymer thin films: a demonstration on OPVs. Journal of Materials Chemistry C, 2013, 1, 6522.	5.5	16
35	Hybrid mesostructured electrodes for fast-switching proton-based solid state electrochromic devices. Journal of Materials Chemistry C, 2013, 1, 151-159.	5.5	26
36	Control over in-channel mesostructure orientation through AAM surface modification. Physical Chemistry Chemical Physics, 2013, 15, 13637.	2.8	5

Gitti Frey

#	Article	IF	CITATIONS
37	On the Origin of Charge Generation in Hybrid TiOx/Conjugated Polymer Photovoltaic Devices. Journal of Physical Chemistry C, 2012, 116, 2024-2032.	3.1	18
38	Mesostructured Silica Containing Conjugated Polymers Formed within the Channels of Anodic Alumina Membranes from Tetrahydrofuran-Based Solution. Langmuir, 2012, 28, 1506-1514.	3.5	9
39	Facile infiltration of semiconducting polymer into mesoporous electrodes for hybrid solar cells. Energy and Environmental Science, 2011, 4, 3051.	30.8	68
40	Understanding and Controlling Organic–Inorganic Interfaces in Mesostructured Hybrid Photovoltaic Materials. Journal of the American Chemical Society, 2011, 133, 10119-10133.	13.7	54
41	Synthesis of ordered mesostructured TiO thin films from tetrahydrofuran–water solutions. Microporous and Mesoporous Materials, 2011, 142, 708-715.	4.4	4
42	Patterned electrode vertical field effect transistor fabricated using block copolymer nanotemplates. Applied Physics Letters, 2009, 95, .	3.3	78
43	Decoupling 2D Inter―and Intrachain Energy Transfer in Conjugated Polymers. ChemPhysChem, 2009, 10, 576-581.	2.1	17
44	Towards understanding paleosols in Southern Levantine eolianites: Integration of micromorphology, environmental magnetism and mineralogy. Journal of Mountain Science, 2009, 6, 113-124.	2.0	9
45	Encapsulation of Conjugated Polymers in Block Copolymer-Templated Mesostructured Oxides: A Cosolvent Assisted Approach. Chemistry of Materials, 2009, 21, 4387-4396.	6.7	12
46	Effect of the Solvent on the Conformation of Isolated MEHâ€PPV Chains Intercalated Into SnS ₂ . ChemPhysChem, 2008, 9, 1430-1436.	2.1	12
47	Selfâ€Organized Semiconducting Polymerâ€Incorporated Mesostructured Titania for Photovoltaic Applications. Advanced Materials, 2008, 20, 2541-2546.	21.0	29
48	Self-assembled conjugated polymer–surfactant–silica mesostructures and their integration into light-emitting diodes. Journal of Materials Chemistry, 2008, 18, 423-436.	6.7	33
49	Dimensionality-dependent energy transfer in polymer-intercalatedSnS2nanocomposites. Physical Review B, 2007, 75, .	3.2	19
50	Inhibition of Energy Transfer between Conjugated Polymer Chains in Host/Guest Nanocomposites Generates White Photo- and Electroluminescence. Journal of the American Chemical Society, 2006, 128, 15968-15969.	13.7	38
51	Solution-Processed Anodes from Layer-Structure Materials for High-Efficiency Polymer Light-Emitting Diodes. Journal of the American Chemical Society, 2003, 125, 5998-6007.	13.7	105
52	Inorganic solution-processed hole-injecting and electron-blocking layers in polymer light-emitting diodes. Journal of Applied Physics, 2002, 92, 7556-7563.	2.5	94
53	Ultrathin Regioregular Poly(3-hexyl thiophene) Field-Effect Transistors. Langmuir, 2002, 18, 10176-10182.	3.5	156
54	Optical-absorption spectra of inorganic fullerenelikeMS2(M=Mo,W). Physical Review B, 1998, 57, 6666-6671.	3.2	270

GITTI FREY

#	Article	IF	CITATIONS
55	The hole in the bucky: structure-property mapping of closed- vs. open-cage fullerene solar-cell blends via temperature/composition phase diagrams. Journal of Materials Chemistry C, 0, , .	5.5	2

⁵⁶ Beneficial Interaction between nickel oxide nanoparticles and polyethylene oxide as printable nanocomposite hole injection layer for organic solar cells. , 0, , .

0