Laurent Metzinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6050105/publications.pdf

Version: 2024-02-01

58 2,710 25 50 papers citations h-index g-index

58 58 58 58 3442

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Utrophin-Dystrophin-Deficient Mice as a Model for Duchenne Muscular Dystrophy. Cell, 1997, 90, 717-727.	13.5	667
2	Postsynaptic Abnormalities at the Neuromuscular Junctions of Utrophin-deficient Mice. Journal of Cell Biology, 1997, 136, 883-894.	2.3	212
3	miR-143 and miR-145. Circulation: Cardiovascular Genetics, 2011, 4, 197-205.	5.1	189
4	miR-223: An inflammatory oncomiR enters the cardiovascular field. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1001-1009.	1.8	147
5	Crystal structure of the transfer-RNA domain of transfer-messenger RNA in complex with SmpB. Nature, 2003, 424, 699-703.	13.7	111
6	Inorganic Phosphate Accelerates the Migration of Vascular Smooth Muscle Cells: Evidence for the Involvement of miR-223. PLoS ONE, 2012, 7, e47807.	1.1	105
7	On the facultative requirement of the bacterial RNA chaperone, Hfq. Trends in Microbiology, 2009, 17, 399-405.	3.5	84
8	MicroRNA deregulation in symptomatic carotid plaque. Journal of Vascular Surgery, 2015, 62, 1245-1250.e1.	0.6	75
9	Regulation of cytosolic calcium in skeletal muscle cells of the <i>mdx</i> mouse under conditions of stress. British Journal of Pharmacology, 1996, 118, 611-616.	2.7	74
10	Possible involvement of microRNAs in vascular damage in experimental chronic kidney disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 88-98.	1.8	66
11	Serum levels of miR-126 and miR-223 and outcomes in chronic kidney disease patients. Scientific Reports, 2019, 9, 4477.	1.6	62
12	miR-126 Is Involved in Vascular Remodeling under Laminar Shear Stress. BioMed Research International, 2015, 2015, 1-11.	0.9	55
13	Dystrobrevin deficiency at the sarcolemma of patients with muscular dystrophy. Human Molecular Genetics, 1997, 6, 1185-1191.	1.4	54
14	Magnesium Attenuates Phosphate-Induced Deregulation of a MicroRNA Signature and Prevents Modulation of Smad1 and Osterix during the Course of Vascular Calcification. BioMed Research International, 2016, 2016, 1-11.	0.9	51
15	Prednisolone enhances myogenesis and dystrophin-related protein in skeletal muscle cell cultures frommdxmouse. Journal of Neuroscience Research, 1993, 35, 363-372.	1.3	49
16	microRNAs in the pathophysiology of CKD-MBD: Biomarkers and innovative drugs. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 337-345.	1.8	48
17	High inorganic phosphate concentration inhibits osteoclastogenesis by modulating miR-223. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2202-2212.	1.8	46
18	Modulation by prednisolone of calcium handling in skeletal muscle cells. British Journal of Pharmacology, 1995, 116, 2811-2816.	2.7	45

#	Article	IF	CITATIONS
19	The mir-221/222 Cluster is a Key Player in Vascular Biology via the Fine-Tuning of Endothelial Cell Physiology. Current Vascular Pharmacology, 2016, 15, 40-46.	0.8	41
20	The Involvement of miRNA in Carotid-Related Stroke. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1608-1617.	1.1	41
21	TRIMming down to TRIM37: Relevance to Inflammation, Cardiovascular Disorders, and Cancer in MULIBREY Nanism. International Journal of Molecular Sciences, 2019, 20, 67.	1.8	40
22	Uremic Toxins Affect Erythropoiesis during the Course of Chronic Kidney Disease: A Review. Cells, 2020, 9, 2039.	1.8	31
23	The expanding roles of microRNAs in kidney pathophysiology. Nephrology Dialysis Transplantation, 2019, 34, 7-15.	0.4	30
24	A multi-omics analysis of the regulatory changes induced by miR-223 in a monocyte/macrophage cell line. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2664-2678.	1.8	29
25	The Discovery of Novel Genomic, Transcriptomic, and Proteomic Biomarkers in Cardiovascular and Peripheral Vascular Disease: The State of the Art. BioMed Research International, 2016, 2016, 1-10.	0.9	28
26	miR-223 and other miRNA's evaluation in chronic kidney disease: Innovative biomarkers and therapeutic tools. Non-coding RNA Research, 2019, 4, 30-35.	2.4	28
27	$\hat{l}\pm$ -Methylprednisolone promotes skeletal myogenesis in dystrophin-deficient and control mouse cultures. Neuroscience Letters, 1993, 155, 171-174.	1.0	26
28	Independent binding sites of small protein B onto transfer-messenger RNA during trans-translation. Nucleic Acids Research, 2005, 33, 2384-2394.	6.5	26
29	tmRNA and associated ligands: a puzzling relationship. Biochimie, 2005, 87, 897-903.	1.3	20
30	microRNAs are dysregulated in the cerebral microvasculature of CKD mice. Frontiers in Bioscience - Elite, 2014, E6, 80-88.	0.9	20
31	The highest affinity binding site of small protein B on transfer messenger RNA is outside the tRNA domain. Rna, 2008, 14, 1761-1772.	1.6	18
32	MicroRNAs Are Associated with Uremic Toxicity, Cardiovascular Calcification, and Disease. Contributions To Nephrology, 2017, 189, 160-168.	1.1	16
33	The Management of Cardiovascular Risk through Epigenetic Biomarkers. BioMed Research International, 2017, 2017, 1-6.	0.9	16
34	Non-Coding RNAs in Kidney Diseases: The Long and Short of Them. International Journal of Molecular Sciences, 2021, 22, 6077.	1.8	16
35	Serum microRNAs are altered in various stages of chronic kidney disease: a preliminary study. CKJ: Clinical Kidney Journal, 2016, 10, sfw060.	1.4	14
36	Serum microRNAs are altered in various stages of chronic kidney disease: a preliminary study. CKJ: Clinical Kidney Journal, 2017, 10, 578-578.	1.4	14

#	Article	IF	CITATIONS
37	miRâ€126â€3p is essential for CXCL12â€induced angiogenesis. Journal of Cellular and Molecular Medicine, 2021, 25, 6032-6045.	1.6	14
38	Static and magic angle spinning 31P NMR spectroscopy of two natural plasma membranes. FEBS Letters, 1999, 461, 258-262.	1.3	12
39	Lazaroids enhance skeletal myogenesis in primary cultures of dystrophin-deficient mdx mice. Journal of the Neurological Sciences, 1994, 126, 138-145.	0.3	11
40	Syndecan-1 and Free Indoxyl Sulfate Levels Are Associated with miR-126 in Chronic Kidney Disease. International Journal of Molecular Sciences, 2021, 22, 10549.	1.8	11
41	Binding of the dystrophin second repeat to membrane di-oleyl phospholipids is dependent upon lipid packing. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 648-654.	1.4	10
42	TRIM37 is highly expressed during mitosis in CHON-002 chondrocytes cell line and is regulated by miR-223. Bone, 2020, 137, 115393.	1.4	10
43	Aortic valve calcification in the era of non-coding RNAs: The revolution to come in aortic stenosis management?. Non-coding RNA Research, 2020, 5, 41-47.	2.4	10
44	Inhibition of miR-223 Expression Using a Sponge Strategy Decreases Restenosis in Rat Injured Carotids. Current Vascular Pharmacology, 2020, 18, 507-516.	0.8	9
45	miR-92a: A Novel Potential Biomarker of Rapid Aortic Valve Calcification. Journal of Heart Valve Disease, 2017, 26, 327-333.	0.5	9
46	Differential Activation of Adenylate Cyclase by Secretin and VIP Receptors in the Calf Pancreas. Pancreas, 2005, 31, 174-181.	0.5	6
47	A rapid preparation of primary cultures of mouse skeletal muscle cells. Cytotechnology, 1993, 13, 55-60.	0.7	4
48	Editorial: Diabetes and Heart Failure: Pathogenesis and Novel Therapeutic Approaches. Frontiers in Physiology, 2019, 10, 253.	1.3	4
49	Antioxidant lazaroids enhance differentiation of C2 skeletal muscle cells. Neuroscience Letters, 1995, 186, 177-180.	1.0	3
50	Implication of MicroRNAs in the Pathophysiology of Cardiac and Vascular Smooth Muscle Cells. , 0, , .		2
51	Roles and Clinical Applications of Biomarkers in Cardiovascular Disease. BioMed Research International, 2016, 2016, 1-2.	0.9	1
52	SP288SEVELAMER TREATMENT MODULATES MICRORNA'S EXPRESSION IN AORTA OF MICE WITH CHRONIC KIDNEY DISEASE. Nephrology Dialysis Transplantation, 2015, 30, iii475-iii475.	0.4	0
53	Roles and Clinical Applications of Biomarkers in Cardiovascular Disease 2017. BioMed Research International, 2017, 2017, 1-2.	0.9	0
54	Improving Adherence to Ticagrelor in Patients After Acute Coronary Syndrome: Talking Face to Face is Better than a Phone Call. Current Vascular Pharmacology, 2020, 18, 302-303.	0.8	0

#	Article	IF	CITATIONS
55	MO448MICRORNAS IMPLICATED IN CHRONIC KIDNEY DISEASE. Nephrology Dialysis Transplantation, 2021, 36, .	0.4	0
56	MO550INDOXYL SULFATE AFFECTS ERYTHROPOIESIS DURING THE COURSE OF CHRONIC KIDNEY DISEASE: A MOLECULAR STUDY. Nephrology Dialysis Transplantation, 2021, 36, .	0.4	0
57	The Non-coding MicroRNA-223 is a Promising Biomarker of Chronic Kidney Disease., 0,, 91-95.		O
58	The Role of Non-Coding RNAs in Kidney Diseases. International Journal of Molecular Sciences, 2022, 23, 6624.	1.8	0