## Miroslav Stepanek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6050056/publications.pdf Version: 2024-02-01



MIDOSLAV STEDANEK

| #  | Article                                                                                                                                                                                                                                          | IF          | CITATIONS            |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------|
| 1  | DPD Modelling of the Self- and Co-Assembly of Polymers and Polyelectrolytes in Aqueous Media:<br>Impact on Polymer Science. Polymers, 2022, 14, 404.                                                                                             | 2.0         | 16                   |
| 2  | Anionically Functionalized Glycogen Encapsulates Melittin by Multivalent Interaction.<br>Biomacromolecules, 2022, 23, 3371-3382.                                                                                                                 | 2.6         | 3                    |
| 3  | Quantitative prediction of charge regulation in oligopeptides. Molecular Systems Design and Engineering, 2021, 6, 122-131.                                                                                                                       | 1.7         | 18                   |
| 4  | Modification of the Co-assembly Behavior of Double-Hydrophilic Block Polyelectrolytes by<br>Hydrophobic Terminal Groups: Ordered Nanostructures with Interpolyelectrolyte Complex Domains.<br>ACS Applied Polymer Materials, 2021, 3, 1956-1963. | 2.0         | 5                    |
| 5  | Polynorbornene-Based Polyelectrolytes with Covalently Attached Metallacarboranes: Synthesis,<br>Characterization, and Lithium-Ion Mobility. Macromolecules, 2021, 54, 6867-6877.                                                                 | 2.2         | 4                    |
| 6  | Reversible multilayered vesicle-like structures with fluid hydrophobic and interpolyelectrolyte layers. Journal of Colloid and Interface Science, 2021, 599, 313-325.                                                                            | 5.0         | 5                    |
| 7  | Role of pKA in Charge Regulation and Conformation of Various Peptide Sequences. Polymers, 2021, 13, 214.                                                                                                                                         | 2.0         | 24                   |
| 8  | Polystyrene and Poly(ethylene glycol)-b-Poly(ε-caprolactone) Nanoparticles with Porphyrins:<br>Structure, Size, and Photooxidation Properties. Langmuir, 2020, 36, 302-310.                                                                      | 1.6         | 12                   |
| 9  | Onion Micelles with an Interpolyelectrolyte Complex Middle Layer: Experimental Motivation and Computer Study. Macromolecules, 2020, 53, 6780-6795.                                                                                               | 2.2         | 8                    |
| 10 | Complexation of DNA with QPDMAEMA- <i>b</i> -PLMA- <i>b</i> -POEGMA Cationic Triblock Terpolymer<br>Micelles. Macromolecules, 2020, 53, 5747-5755.                                                                                               | 2.2         | 14                   |
| 11 | Physicochemical Evaluation of Insulin Complexes with QPDMAEMA-b-PLMA-b-POEGMA Cationic<br>Amphiphlic Triblock Terpolymer Micelles. Polymers, 2020, 12, 309.                                                                                      | 2.0         | 13                   |
| 12 | Evolution of Structure in a Comb Copolymer–Surfactant Coacervate. Macromolecules, 2019, 52,<br>6303-6310.                                                                                                                                        | 2.2         | 4                    |
| 13 | Combination of phosphonium and ammonium pendant groups in cationic conjugated polyelectrolytes<br>based on regioregular poly(3-hexylthiophene) polymer chains. European Polymer Journal, 2018, 100,<br>200-208.                                  | 2.6         | 11                   |
| 14 | Local pH and Effective p <i>K</i> of a Polyelectrolyte Chain: Two Names for One Quantity?. ACS Macro<br>Letters, 2018, 7, 1243-1247.                                                                                                             | 2.3         | 22                   |
| 15 | Coassembly of Poly( <i>N</i> -isopropylacrylamide) with Dodecyl and Carboxyl Terminal Groups with<br>Cationic Surfactant: Critical Comparison of Experimental and Simulation Data. Macromolecules, 2018,<br>51, 7295-7308.                       | 2.2         | 5                    |
| 16 | Formation of core/corona nanoparticles with interpolyelectrolyte complex cores in aqueous<br>solution: insight into chain dynamics in the complex from fluorescence quenching. Soft Matter, 2018,<br>14, 7578-7585.                              | 1.2         | 6                    |
| 17 | Stabilization of aqueous dispersions of poly(methacrylic acid)-coated iron oxide nanoparticles by double hydrophilic block polyelectrolyte poly(ethylene oxide)-block-poly(N-methyl-2-vinylpyridinium) Tj ETQq1                                  | 1 0.728#314 | rg <b>B3</b> /Overlo |
| 18 | Thermoresponsive behavior of poly(N-isopropylacrylamide)s with dodecyl and carboxyl terminal groups in aqueous solution: pH-dependent cloud point temperature. Colloid and Polymer Science, 2017, 295, 1343-1349.                                | 1.0         | 16                   |

| #  | Article                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Stabilization of coated inorganic nanoparticles by amphiphilic copolymers in aqueous media.<br>Dissipative particle dynamics study. Colloid and Polymer Science, 2017, 295, 1429-1441.                                                                                        | 1.0 | 4         |
| 20 | Formation of linear and crosslinked polyurethane nanoparticles that self-assemble differently in acetone and in water. Progress in Organic Coatings, 2017, 106, 119-127.                                                                                                      | 1.9 | 11        |
| 21 | Coassembly of Gemini Surfactants with Double Hydrophilic Block Polyelectrolytes Leading to Complex Nanoassemblies. Macromolecules, 2017, 50, 8745-8754.                                                                                                                       | 2.2 | 6         |
| 22 | Nanoparticles with Embedded Porphyrin Photosensitizers for Photooxidation Reactions and Continuous Oxygen Sensing. ACS Applied Materials & Interfaces, 2017, 9, 36229-36238.                                                                                                  | 4.0 | 22        |
| 23 | PMAA-stabilized ferrofluid/chitosan/yeast composite for bioapplications. Journal of Magnetism and<br>Magnetic Materials, 2017, 427, 29-33.                                                                                                                                    | 1.0 | 7         |
| 24 | Influence of Corona Structure on Binding of an Ionic Surfactant in Oppositely Charged Amphiphilic<br>Polyelectrolyte Micelles. Langmuir, 2016, 32, 4059-4065.                                                                                                                 | 1.6 | 10        |
| 25 | Composite particles formed by complexation of poly(methacrylic acid) — stabilized magnetic fluid<br>with chitosan: Magnetic material for bioapplications. Materials Science and Engineering C, 2016, 67,<br>486-492.                                                          | 3.8 | 9         |
| 26 | Fluorescence Spectroscopy Studies of Amphiphilic Block Copolymer Micelles in Aqueous Solutions.<br>Springer Series on Fluorescence, 2016, , 203-215.                                                                                                                          | 0.8 | 1         |
| 27 | Glucose-Responsive Hybrid Nanoassemblies in Aqueous Solutions: Ordered Phenylboronic Acid within<br>Intermixed Poly(4-hydroxystyrene)- <i>block</i> -poly(ethylene oxide) Block Copolymer.<br>Biomacromolecules, 2015, 16, 3731-3739.                                         | 2.6 | 29        |
| 28 | Aggregation of superparamagnetic iron oxide nanoparticles in dilute aqueous dispersions: Effect of<br>coating by double-hydrophilic block polyelectrolyte. Colloids and Surfaces A: Physicochemical and<br>Engineering Aspects, 2015, 483, 1-7.                               | 2.3 | 11        |
| 29 | Steady-state and time-resolved luminescence of Ru(II) polypyridine complexes attached to Ag<br>nanoparticles: Effect of chemisorption in comparison with electrostatic bonding. Spectrochimica<br>Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 150, 657-663. | 2.0 | 1         |
| 30 | Self- and co-assembly of amphiphilic gradient polyelectrolyte in aqueous solution: Interaction with oppositely charged ionic surfactant. European Polymer Journal, 2015, 73, 212-221.                                                                                         | 2.6 | 12        |
| 31 | Poly(N-isopropyl acrylamide)-block-poly(n-butyl acrylate) thermoresponsive amphiphilic copolymers:<br>Synthesis, characterization and self-assembly behavior in aqueous solutions. European Polymer<br>Journal, 2014, 61, 124-132.                                            | 2.6 | 29        |
| 32 | Morphologically Tunable Coassembly of Double Hydrophilic Block Polyelectrolyte with Oppositely<br>Charged Fluorosurfactant. Macromolecules, 2014, 47, 7081-7090.                                                                                                              | 2.2 | 16        |
| 33 | Micellization of Zonyl FSN-100 fluorosurfactant in aqueous solutions. Colloids and Surfaces A:<br>Physicochemical and Engineering Aspects, 2014, 443, 209-215.                                                                                                                | 2.3 | 12        |
| 34 | Structure of polymeric nanoparticles in surfactant-stabilized aqueous dispersions of<br>high-molar-mass hydrophobic graft copolymers. Colloids and Surfaces A: Physicochemical and<br>Engineering Aspects, 2014, 456, 10-17.                                                  | 2.3 | 3         |
| 35 | Polyelectrolyte–Surfactant Complexes of<br>Poly[3,5-bis(dimethylaminomethyl)-4-hydroxystyrene]-block-poly(ethylene oxide) and Sodium Dodecyl<br>Sulfate: Anomalous Self-Assembly Behavior. Langmuir, 2013, 29, 5443-5449.                                                     | 1.6 | 15        |
| 36 | Thermodynamic and Kinetic Aspects of Coassembly of PEO–PMAA Block Copolymer and DPCl<br>Surfactants into Ordered Nanoparticles in Aqueous Solutions Studied by ITC, NMR, and Time-Resolved<br>SAXS Techniques. Macromolecules, 2013, 46, 2172-2181.                           | 2.2 | 48        |

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Structural Modulation of Phosducin by Phosphorylation and 14-3-3 Protein Binding. Biophysical<br>Journal, 2012, 103, 1960-1969.                                                                                                          | 0.2 | 13        |
| 38 | Wormlike core–shell nanoparticles formed by co-assembly of double hydrophilic block polyelectrolyte with oppositely charged fluorosurfactant. Soft Matter, 2012, 8, 9412.                                                                | 1.2 | 25        |
| 39 | Association of Poly(4-hydroxystyrene)- <i>block</i> -Poly(Ethylene oxide) in Aqueous Solutions: Block<br>Copolymer Nanoparticles with Intermixed Blocks. Langmuir, 2012, 28, 307-313.                                                    | 1.6 | 23        |
| 40 | Coassembly of Poly(ethylene oxide)-block-poly(methacrylic acid) and N-Dodecylpyridinium Chloride in<br>Aqueous Solutions Leading to Ordered Micellar Assemblies within Copolymer Aggregates.<br>Macromolecules, 2012, 45, 6471-6480.     | 2.2 | 46        |
| 41 | Polyelectrolyteâ^'Surfactant Complexes Formed by<br>Poly[3,5-bis(trimethylammoniummethyl)4-hydroxystyrene iodide]- <i>block</i> -poly(ethylene oxide) and<br>Sodium Dodecyl Sulfate in Aqueous Solutions. Langmuir, 2011, 27, 5275-5281. | 1.6 | 35        |
| 42 | Celluloseâ€based graft copolymers with controlled architecture prepared in a homogeneous phase.<br>Journal of Polymer Science Part A, 2011, 49, 4353-4367.                                                                               | 2.5 | 25        |
| 43 | Imaging of block copolymer vesicles in solvated state by wet scanning transmission electron microscopy. European Polymer Journal, 2011, 47, 1273-1278.                                                                                   | 2.6 | 8         |
| 44 | Monte Carlo simulation of fluorescence correlation spectroscopy data. Collection of Czechoslovak Chemical Communications, 2011, 76, 207-222.                                                                                             | 1.0 | 4         |
| 45 | Solvent relaxation studies applied to stimuli-responsive core-shell nanoparticles. Proceedings of SPIE, 2010, , .                                                                                                                        | 0.8 | 0         |
| 46 | Fluorescence Spectroscopy as a Tool for Investigating the Self-Organized Polyelectrolyte Systems.<br>Advances in Polymer Science, 2010, , 187-249.                                                                                       | 0.4 | 8         |
| 47 | The C-Terminal Segment of Yeast BMH Proteins Exhibits Different Structure Compared to Other 14-3-3<br>Protein Isoforms. Biochemistry, 2010, 49, 3853-3861.                                                                               | 1.2 | 28        |
| 48 | Self-Assembly of Poly(4-methylstyrene)- <i>g</i> -poly(methacrylic acid) Graft Copolymer in Selective<br>Solvents for Grafts: Scattering and Molecular Dynamics Simulation Study. Langmuir, 2010, 26,<br>9289-9296.                      | 1.6 | 12        |
| 49 | Self-assemblies formed by four-arm star copolymers with amphiphilic diblock arms in aqueous solutions. Polymer, 2009, 50, 3638-3644.                                                                                                     | 1.8 | 26        |
| 50 | Multicompartment Nanoparticles Formed by a Heparin-Mimicking Block Terpolymer in Aqueous<br>Solutions. Macromolecules, 2009, 42, 5605-5613.                                                                                              | 2.2 | 58        |
| 51 | On Mechanism of Intermediate-Sized Circular DNA Compaction Mediated by Spermine: Contribution of Fluorescence Lifetime Correlation Spectroscopy. Journal of Fluorescence, 2008, 18, 679-684.                                             | 1.3 | 11        |
| 52 | pH-Dependent Self-Assembly of Polystyrene- <i>block</i> -Poly((sulfamate-carboxylate)isoprene)<br>Copolymer in Aqueous Media. Langmuir, 2008, 24, 12017-12025.                                                                           | 1.6 | 26        |
| 53 | Fluorescence Lifetime Correlation Spectroscopy Reveals Compaction Mechanism of 10 and 49 kbp DNA and Differences between Polycation and Cationic Surfactant. Journal of Physical Chemistry B, 2008, 112, 16823-16829.                    | 1.2 | 23        |
| 54 | Fluorescence Study of the Solvation of Fluorescent Probes Prodan and Laurdan in<br>Poly(ε-caprolactone)- <i>block</i> -poly(ethylene oxide) Vesicles in Aqueous Solutions with<br>Tetrahydrofurane. Langmuir, 2008, 24, 288-295.         | 1.6 | 36        |

| #  | Article                                                                                                                                                                                                                                                                                          | IF             | CITATIONS            |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------|
| 55 | pHâ€Dependent Behavior of Hydrophobically Modified Polyelectrolyte Shells of Polymeric<br>Nanoparticles. Macromolecular Symposia, 2008, 273, 95-102.                                                                                                                                             | 0.4            | 5                    |
| 56 | Multilayer Polymeric Nanoparticles Based on Specific Interactions in Solution:<br>Polystyrene-block-poly(methacrylic acid) Micelles with Linear Poly(2-vinylpyridine) in Aqueous<br>Buffers. Materials and Manufacturing Processes, 2008, 23, 557-560.                                           | 2.7            | 5                    |
| 57 | Preparation and Characterization of Self-Assembled Nanoparticles Formed by Poly(ethylene) Tj ETQq1 1 0.784314<br>Solutions. Langmuir, 2007, 23, 3395-3400.                                                                                                                                       | rgBT /C<br>1.6 | Overlock 10 Tf<br>45 |
| 58 | Interpolymer Complexes Based on the Core/Shell Micelles. Interaction of<br>Polystyrene-block-poly(methacrylic acid) Micelles with Linear Poly(2-vinylpyridine) in 1,4-Dioxane<br>Water Mixtures and in Aqueous Mediaâ€. Journal of Physical Chemistry B, 2007, 111, 8394-8401.                   | 1.2            | 16                   |
| 59 | Experimental Study of the Electrophoretic Mobility and Effective Electric Charge of<br>Polystyrene-Block-Poly(Methacrylic Acid) Micelles in Aqueous Media. International Journal of<br>Polymer Analysis and Characterization, 2007, 12, 23-33.                                                   | 0.9            | 5                    |
| 60 | Self-Assembly of Heteroarm Star Copolymers – A Monte Carlo Study. Macromolecular Theory and Simulations, 2007, 16, 386-398.                                                                                                                                                                      | 0.6            | 18                   |
| 61 | Atomic Force Microscopy and Light Scattering Study of Onion-Type Micelles Formed by<br>Polystyrene-block-poly(2-vinylpyridine) and Poly(2-vinylpyridine)-block-poly(ethylene oxide)<br>Copolymers in Aqueous Solutions. Collection of Czechoslovak Chemical Communications, 2006, 71,<br>723-738 | 1.0            | 10                   |
| 62 | Dynamics of Chain Exchange Between Self-Assembled Diblock Copolymer Micelles of Poly(ethylene) Tj ETQq0 0 0<br>Czechoslovak Chemical Communications, 2005, 70, 1811-1828.                                                                                                                        | rgBT /O<br>1.0 | verlock 10 Tf 5<br>9 |
| 63 | New insights on the solution behavior and self-assembly of polystyrene/poly(2-vinylpyridine) â€ <sup>~</sup> hairy'<br>heteroarm star copolymers with highly asymmetric arms in polar organic and aqueous media.<br>Polymer, 2005, 46, 10493-10505.                                              | 1.8            | 35                   |
| 64 | Reversible Aggregation of Polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) Block<br>Copolymer Micelles in Acidic Aqueous Solutions. Langmuir, 2005, 21, 10783-10790.                                                                                                           | 1.6            | 29                   |
| 65 | Solvent Relaxation Study of pH-Dependent Hydration of Poly(oxyethylene) Shells in<br>Polystyrene-block-poly(2-vinylpyridine)-block-poly(oxyethylene) Micelles in Aqueous Solutions.<br>Journal of Physical Chemistry A, 2005, 109, 10803-10812.                                                  | 1.1            | 45                   |
| 66 | Lyotropic and Thermotropic Phase Transitions in Films of Ioneneâ^'Alkyl Sulfate Complexes. Langmuir, 2005, 21, 6797-6804.                                                                                                                                                                        | 1.6            | 5                    |
| 67 | Light Scattering, Atomic Force Microscopy and Fluorescence Correlation Spectroscopy Studies of Polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) Micelles. Collection of Czechoslovak Chemical Communications, 2003, 68, 2120-2138.                                             | 1.0            | 30                   |
| 68 | Hybrid Polymeric Micelles with Hydrophobic Cores and Mixed Polyelectrolyte/Nonelectrolyte Shells in Aqueous Media. 1. Preparation and Basic Characterization. Langmuir, 2001, 17, 4240-4244.                                                                                                     | 1.6            | 88                   |
| 69 | Hybrid Polymeric Micelles with Hydrophobic Cores and Mixed Polyelectrolyte/Nonelectrolyte Shells in Aqueous Media. 2. Studies of the Shell Behavior. Langmuir, 2001, 17, 4245-4250.                                                                                                              | 1.6            | 43                   |
| 70 | Time-Dependent Behavior of Block Polyelectrolyte Micelles in Aqueous Media Studied by Potentiometric Titrations, QELS and Fluorometry. Langmuir, 2000, 16, 2502-2507.                                                                                                                            | 1.6            | 42                   |
| 71 | Polystyrene/Poly(2-vinylpyridine) Heteroarm Star Copolymer Micelles in Aqueous Media and Onion<br>Type Micelles Stabilized by Diblock Copolymers+,‡. Langmuir, 2000, 16, 6868-6876.                                                                                                              | 1.6            | 82                   |
| 72 | Interaction of fluorescent surfactant 5-(N-octadecanoyl)aminofluorescein with polystyrene-block-poly(methacrylic acid) micelles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 147, 79-87.                                                                             | 2.3            | 10                   |

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Fluorometric Studies of the Polyelectrolyte Shell of Block Copolymer Micelles in Aqueous Media.<br>Langmuir, 1999, 15, 8800-8806.                                                                        | 1.6 | 27        |
| 74 | Fluorometric and Ultravioletâ^'Visible Absorption Study of Poly(methacrylic acid) Shells of<br>High-Molar-Mass Block Copolymer Micellesâ€. Langmuir, 1999, 15, 4185-4193.                                | 1.6 | 28        |
| 75 | Solubilization and release of hydrophobic compounds from block copolymer micelles. II. Release of pyrene from polyelectrolyte micelles under equilibrium conditions. Acta Polymerica, 1998, 49, 103-107. | 1.4 | 19        |
| 76 | Solubilization and release of hydrophobic compounds from block copolymer micelles. I. Partitioning of pyrene between polyelectrolyte micelles and the aqueous phase. Acta Polymerica, 1998, 49, 96-102.  | 1.4 | 31        |
| 77 | Fluorescence study of the core/shell interface in polyelectrolyte micelles. Binding of fluorescent surfactants in the interfacial region. Journal of Fluorescence, 1998, 8, 21-25.                       | 1.3 | 4         |
| 78 | Glycation of Human Serum Albumin by DL-Glyceraldehyde: A Fluorescence Quenching Study.<br>Collection of Czechoslovak Chemical Communications, 1997, 62, 1815-1820.                                       | 1.0 | 1         |
| 79 | Insight into the Structure of a Comb Copolymer–Surfactant Coacervate from Dynamic Measurements<br>by DOSY NMR and Neutron Spin Echo Spectroscopy, Macromolecules, 0,                                     | 2.2 | 1         |