
Md. Rabiul Awual

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6049837/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A novel facial composite adsorbent for enhanced copper(II) detection and removal from wastewater. Chemical Engineering Journal, 2015, 266, 368-375.	6.6	643
2	New type mesoporous conjugate material for selective optical copper(II) ions monitoring & removal from polluted waters. Chemical Engineering Journal, 2017, 307, 85-94.	6.6	407
3	Novel nanocomposite materials for efficient and selective mercury ions capturing from wastewater. Chemical Engineering Journal, 2017, 307, 456-465.	6.6	394
4	Efficient detection and adsorption of cadmium(II) ions using innovative nano-composite materials. Chemical Engineering Journal, 2018, 343, 118-127.	6.6	363
5	Assessing of lead(III) capturing from contaminated wastewater using ligand doped conjugate adsorbent. Chemical Engineering Journal, 2016, 289, 65-73.	6.6	353
6	Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents. Chemical Engineering Journal, 2014, 242, 127-135.	6.6	351
7	pH dependent Cu(II) and Pd(II) ions detection and removal from aqueous media by an efficient mesoporous adsorbent. Chemical Engineering Journal, 2014, 236, 100-109.	6.6	349
8	Treatment of copper(II) containing wastewater by a newly developed ligand based facial conjugate materials. Chemical Engineering Journal, 2016, 288, 368-376.	6.6	341
9	Ring size dependent crown ether based mesoporous adsorbent for high cesium adsorption from wastewater. Chemical Engineering Journal, 2016, 303, 539-546.	6.6	331
10	Efficient phosphate removal from water for controlling eutrophication using novel composite adsorbent. Journal of Cleaner Production, 2019, 228, 1311-1319.	4.6	326
11	Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent. Journal of Hazardous Materials, 2014, 278, 227-235.	6.5	323
12	Facile mercury detection and removal from aqueous media involving ligand impregnated conjugate nanomaterials. Chemical Engineering Journal, 2016, 290, 243-251.	6.6	320
13	Solid phase sensitive palladium(II) ions detection and recovery using ligand based efficient conjugate nanomaterials. Chemical Engineering Journal, 2016, 300, 264-272.	6.6	315
14	Trace copper(II) ions detection and removal from water using novel ligand modified composite adsorbent. Chemical Engineering Journal, 2013, 222, 67-76.	6.6	312
15	Copper(II) ions capturing from water using ligand modified a new type mesoporous adsorbent. Chemical Engineering Journal, 2013, 221, 322-330.	6.6	304
16	Large-pore diameter nano-adsorbent and its application for rapid lead(II) detection and removal from aqueous media. Chemical Engineering Journal, 2015, 273, 286-295.	6.6	304
17	Advances in sustainable approaches to recover metals from e-waste-A review. Journal of Cleaner Production, 2020, 244, 118815.	4.6	290
18	A ligand anchored conjugate adsorbent for effective mercury(II) detection and removal from aqueous media. Chemical Engineering Journal, 2018, 334, 432-443.	6.6	278

#	Article	IF	CITATIONS
19	Enhanced trace phosphate removal from water by zirconium(IV) loaded fibrous adsorbent. Water Research, 2011, 45, 4592-4600.	5.3	277
20	Novel ligand functionalized composite material for efficient copper(II) capturing from wastewater sample. Composites Part B: Engineering, 2019, 172, 387-396.	5.9	275
21	A ligand based innovative composite material for selective lead(II) capturing from wastewater. Journal of Molecular Liquids, 2019, 294, 111679.	2.3	274
22	Investigation of ligand immobilized nano-composite adsorbent for efficient cerium(III) detection and recovery. Chemical Engineering Journal, 2015, 265, 210-218.	6.6	271
23	Organic–inorganic based nano-conjugate adsorbent for selective palladium(II) detection, separation and recovery. Chemical Engineering Journal, 2015, 259, 611-619.	6.6	268
24	Innovative composite material for efficient and highly selective Pb(II) ion capturing from wastewater. Journal of Molecular Liquids, 2019, 284, 502-510.	2.3	268
25	A facile composite material for enhanced cadmium(II) ion capturing from wastewater. Journal of Environmental Chemical Engineering, 2019, 7, 103378.	3.3	266
26	Inorganic-organic based novel nano-conjugate material for effective cobalt(II) ions capturing from wastewater. Chemical Engineering Journal, 2017, 324, 130-139.	6.6	265
27	Design a novel optical adsorbent for simultaneous ultra-trace cerium(III) detection, sorption and recovery. Chemical Engineering Journal, 2013, 228, 327-335.	6.6	259
28	Ligand field effect for Dysprosium(III) and Lutetium(III) adsorption and EXAFS coordination with novel composite nanomaterials. Chemical Engineering Journal, 2017, 320, 427-435.	6.6	256
29	Ultimate selenium(IV) monitoring and removal from water using a new class of organic ligand based composite adsorbent. Journal of Hazardous Materials, 2015, 291, 111-119.	6.5	250
30	Adsorption kinetics, isotherms, and thermodynamic studies for the adsorption of Pb2+ and Hg2+ metal ions from aqueous medium using Ti(IV) iodovanadate cation exchanger. Ionics, 2015, 21, 2237-2245.	1.2	248
31	Schiff based ligand containing nano-composite adsorbent for optical copper(II) ions removal from aqueous solutions. Chemical Engineering Journal, 2015, 279, 639-647.	6.6	246
32	Novel composite material for selective copper(II) detection and removal from aqueous media. Journal of Molecular Liquids, 2019, 283, 772-780.	2.3	245
33	Novel conjugated hybrid material for efficient lead(II) capturing from contaminated wastewater. Materials Science and Engineering C, 2019, 101, 686-695.	3.8	241
34	Synthesis a novel multilamellar mesoporous TiO2/ZSM-5 for photo-catalytic degradation of methyl orange dye in aqueous media. Journal of Environmental Chemical Engineering, 2018, 6, 218-227.	3.3	235
35	Encapsulation of cesium from contaminated water with highly selective facial organic–inorganic mesoporous hybrid adsorbent. Chemical Engineering Journal, 2016, 291, 128-137.	6.6	234
36	Arsenate removal from water by a weak-base anion exchange fibrous adsorbent. Water Research, 2008, 42, 689-696.	5.3	233

#	Article	IF	CITATIONS
37	Colorimetric detection and removal of copper(II) ions from wastewater samples using tailor-made composite adsorbent. Sensors and Actuators B: Chemical, 2015, 206, 692-700.	4.0	232
38	Offering an innovative composited material for effective lead(II) monitoring and removal from polluted water. Journal of Cleaner Production, 2019, 231, 214-223.	4.6	231
39	Novel conjugate adsorbent for visual detection and removal of toxic lead(II) ions from water. Microporous and Mesoporous Materials, 2014, 196, 261-269.	2.2	230
40	Functional ligand anchored nanomaterial based facial adsorbent for cobalt(II) detection and removal from water samples. Chemical Engineering Journal, 2015, 271, 155-163.	6.6	230
41	Cleaning the arsenic(V) contaminated water for safe-guarding the public health using novel composite material. Composites Part B: Engineering, 2019, 171, 294-301.	5.9	228
42	Efficient selenium(IV) detection and removal from water by tailor-made novel conjugate adsorbent. Sensors and Actuators B: Chemical, 2015, 209, 194-202.	4.0	225
43	Introducing an amine functionalized novel conjugate material for toxic nitrite detection and adsorption from wastewater. Journal of Cleaner Production, 2019, 228, 778-785.	4.6	223
44	Efficient biodiesel production from Jatropha curcus using CaSO4/Fe2O3-SiO2 core-shell magnetic nanoparticles. Journal of Cleaner Production, 2019, 208, 816-826.	4.6	222
45	Assessing of phosphorus removal by polymeric anion exchangers. Desalination, 2011, 281, 111-117.	4.0	221
46	Natural biodegradable polymeric bioadsorbents for efficient cationic dye encapsulation from wastewater. Journal of Molecular Liquids, 2021, 323, 114587.	2.3	218
47	A weak-base fibrous anion exchanger effective for rapid phosphate removal from water. Journal of Hazardous Materials, 2011, 188, 164-171.	6.5	217
48	Composite nanofibers membranes of poly(vinyl alcohol)/chitosan for selective lead(II) and cadmium(II) ions removal from wastewater. Ecotoxicology and Environmental Safety, 2019, 169, 479-486.	2.9	217
49	Efficient arsenic(V) removal from water by ligand exchange fibrous adsorbent. Water Research, 2012, 46, 5541-5550.	5.3	213
50	Introducing an alternate conjugated material for enhanced lead(II) capturing from wastewater. Journal of Cleaner Production, 2019, 224, 920-929.	4.6	211
51	Current treatment technologies and mechanisms for removal of indigo carmine dyes from wastewater: A review. Journal of Molecular Liquids, 2020, 318, 114061.	2.3	210
52	Fine-tuning mesoporous adsorbent for simultaneous ultra-trace palladium(II) detection, separation and recovery. Journal of Industrial and Engineering Chemistry, 2015, 21, 507-515.	2.9	201
53	Novel hierarchical composite adsorbent for selective lead(II) ions capturing from wastewater samples. Chemical Engineering Journal, 2018, 332, 377-386.	6.6	201
54	Evaluation of lanthanide sorption and their coordination mechanism by EXAFS measurement using novel hybrid adsorbent. Chemical Engineering Journal, 2013, 225, 558-566.	6.6	199

#	Article	IF	CITATIONS
55	Naked-eye lead(II) capturing from contaminated water using innovative large-pore facial composite materials. Microchemical Journal, 2020, 154, 104585.	2.3	195
56	Optimization of an innovative composited material for effective monitoring and removal of cobalt(II) from wastewater. Journal of Molecular Liquids, 2020, 298, 112035.	2.3	194
57	Ultra-trace copper(II) detection and removal from wastewater using novel meso-adsorbent. Journal of Industrial and Engineering Chemistry, 2014, 20, 2332-2340.	2.9	191
58	A sensitive ligand embedded nano-conjugate adsorbent for effective cobalt(II) ions capturing from contaminated water. Chemical Engineering Journal, 2015, 276, 1-10.	6.6	187
59	Mesoporous silica based novel conjugate adsorbent for efficient selenium(IV) detection and removal from water. Microporous and Mesoporous Materials, 2014, 197, 331-338.	2.2	185
60	Novel nano-conjugate materials for effective arsenic(V) and phosphate capturing in aqueous media. Chemical Engineering Journal, 2018, 331, 54-63.	6.6	185
61	Novel optical composite material for efficient vanadium(III) capturing from wastewater. Journal of Molecular Liquids, 2019, 283, 704-712.	2.3	182
62	Assessment of enhanced nitrite removal and monitoring using ligand modified stable conjugate materials. Chemical Engineering Journal, 2019, 363, 64-72.	6.6	181
63	Improving cesium removal to clean-up the contaminated water using modified conjugate material. Journal of Environmental Chemical Engineering, 2020, 8, 103684.	3.3	181
64	Adsorption of rose Bengal dye from aqueous solution by amberlite Ira-938 resin: kinetics, isotherms, and thermodynamic studies. Desalination and Water Treatment, 2016, 57, 13527-13533.	1.0	179
65	Sustainable detection and capturing of cerium(III) using ligand embedded solid-state conjugate adsorbent. Journal of Molecular Liquids, 2021, 338, 116667.	2.3	179
66	A novel ligand based dual conjugate adsorbent for cobalt(II) and copper(II) ions capturing from water. Sensors and Actuators B: Chemical, 2014, 203, 71-80.	4.0	178
67	Development of synthetic zeolites from bio-slag for cesium adsorption: Kinetic, isotherm and thermodynamic studies. Journal of Water Process Engineering, 2020, 33, 101055.	2.6	178
68	Assessing of cesium removal from wastewater using functionalized wood cellulosic adsorbent. Chemosphere, 2021, 270, 128668.	4.2	178
69	Rapid column-mode removal of arsenate from water by crosslinked poly(allylamine) resin. Water Research, 2009, 43, 1229-1236.	5.3	177
70	Removal of trace arsenic(V) and phosphate from water by a highly selective ligand exchange adsorbent. Journal of Environmental Sciences, 2011, 23, 1947-1954.	3.2	177
71	A novel fine-tuning mesoporous adsorbent for simultaneous lead(II) detection and removal from wastewater. Sensors and Actuators B: Chemical, 2014, 202, 395-403.	4.0	177
72	Utilizing an alternative composite material for effective copper(II) ion capturing from wastewater. Journal of Molecular Liquids, 2021, 336, 116325.	2.3	177

#	Article	IF	CITATIONS
73	A Reliable Hybrid Adsorbent for Efficient Radioactive Cesium Accumulation from Contaminated Wastewater. Scientific Reports, 2016, 6, 19937.	1.6	177
74	Evaluating of arsenic(V) removal from water by weak-base anion exchange adsorbents. Environmental Science and Pollution Research, 2013, 20, 421-430.	2.7	175
75	Efficient adsorbents of nanoporous aluminosilicate monoliths for organic dyes from aqueous solution. Journal of Colloid and Interface Science, 2011, 359, 9-18.	5.0	173
76	Functionalized novel mesoporous adsorbent for selective lead(II) ions monitoring and removal from wastewater. Sensors and Actuators B: Chemical, 2014, 203, 854-863.	4.0	171
77	Visual nickel(II) ions treatment in petroleum samples using a mesoporous composite adsorbent. Chemical Engineering Journal, 2018, 334, 957-967.	6.6	170
78	Efficient cesium encapsulation from contaminated water by cellulosic biomass based activated wood charcoal. Chemosphere, 2021, 262, 127801.	4.2	169
79	Adsorption of textile dye using para-aminobenzoic acid modified activated carbon: Kinetic and equilibrium studies. Journal of Molecular Liquids, 2019, 296, 112075.	2.3	168
80	Efficient encapsulation of toxic dyes from wastewater using several biodegradable natural polymers and their composites. Journal of Cleaner Production, 2021, 291, 125920.	4.6	167
81	Selective lanthanide sorption and mechanism using novel hybrid Lewis base (N-methyl-N-phenyl-1,10-phenanthroline-2-carboxamide) ligand modified adsorbent. Journal of Hazardous Materials, 2013, 252-253, 313-320.	6.5	166
82	Efficient toxic nitrite monitoring and removal from aqueous media with ligand based conjugate materials. Journal of Molecular Liquids, 2019, 285, 20-26.	2.3	165
83	A review on nickel(II) adsorption in single and binary component systems and future path. Journal of Environmental Chemical Engineering, 2019, 7, 103305.	3.3	163
84	Investigation of palladium(II) detection and recovery using ligand modified conjugate adsorbent. Chemical Engineering Journal, 2013, 222, 172-179.	6.6	161
85	Ligand based sustainable composite material for sensitive nickel(II) capturing in aqueous media. Journal of Environmental Chemical Engineering, 2020, 8, 103591.	3.3	161
86	Preparation of new class composite adsorbent for enhanced palladium(II) detection and recovery. Sensors and Actuators B: Chemical, 2015, 209, 790-797.	4.0	159
87	Sustainable toxic dyes removal with advanced materials for clean water production: A comprehensive review. Journal of Cleaner Production, 2022, 332, 130039.	4.6	159
88	Preparing of novel fibrous ligand exchange adsorbent for rapid column-mode trace phosphate removal from water. Journal of Industrial and Engineering Chemistry, 2014, 20, 2840-2847.	2.9	158
89	Improving the hydrogen production from water over MgO promoted Ni–Si/CNTs photocatalyst. Journal of Cleaner Production, 2019, 238, 117887.	4.6	158
90	Efficient detection and extraction of cobalt(II) from lithium ion batteries and wastewater by novel composite adsorbent. Sensors and Actuators B: Chemical, 2014, 191, 9-18.	4.0	155

#	Article	IF	CITATIONS
91	Biodegradable natural carbohydrate polymeric sustainable adsorbents for efficient toxic dye removal from wastewater. Journal of Molecular Liquids, 2020, 319, 114356.	2.3	155
92	Step towards the sustainable toxic dyes removal and recycling from aqueous solution- A comprehensive review. Resources, Conservation and Recycling, 2021, 175, 105849.	5.3	152
93	Large three-dimensional mesocage pores tailoring silica nanotubes as membrane filters: nanofiltration and permeation flux of proteins. Journal of Materials Chemistry, 2011, 21, 5593.	6.7	150
94	Rapid sensing and recovery of palladium(II) using N,N-bis(salicylidene)1,2-bis(2-aminophenylthio)ethane modified sensor ensemble adsorbent. Sensors and Actuators B: Chemical, 2013, 183, 332-341.	4.0	150
95	One-step wet-chemical synthesis of ternary ZnO/CuO/Co ₃ O ₄ nanoparticles for sensitive and selective melamine sensor development. New Journal of Chemistry, 2019, 43, 4849-4858.	1.4	149
96	Non-enzymatic simultaneous detection of <scp>l</scp> -glutamic acid and uric acid using mesoporous Co ₃ O ₄ nanosheets. RSC Advances, 2016, 6, 80511-80521.	1.7	148
97	Detection of uric acid based on doped ZnO/Ag ₂ 0/Co ₃ 0 ₄ nanoparticle loaded glassy carbon electrode. New Journal of Chemistry, 2019, 43, 8651-8659.	1.4	148
98	Arsenic sensor development based on modification with (<i>E</i>)- <i>N</i> ′-(2-nitrobenzylidine)-benzenesulfonohydrazide: a real sample analysis. New Journal of Chemistry, 2019, 43, 9066-9075.	1.4	148
99	Assessment of clean H2 energy production from water using novel silicon photocatalyst. Journal of Cleaner Production, 2020, 244, 118805.	4.6	148
100	Rapid recognition and recovery of gold(III) with functional ligand immobilized novel mesoporous adsorbent. Microchemical Journal, 2013, 110, 591-598.	2.3	147
101	Simultaneous optical detection and extraction of cobalt(II) from lithium ion batteries using nanocollector monoliths. Sensors and Actuators B: Chemical, 2013, 176, 1015-1025.	4.0	146
102	Mesoporous aluminosilica sensors for the visual removal and detection of Pd(II) and Cu(II) ions. Microporous and Mesoporous Materials, 2013, 166, 195-205.	2.2	143
103	Simultaneous ultra-trace palladium(II) detection and recovery from wastewater using new class meso-adsorbent. Journal of Industrial and Engineering Chemistry, 2015, 21, 405-413.	2.9	141
104	Optical mesosensors for monitoring and removal of ultra-trace concentration of Zn(ii) and Cu(ii) ions from water. Analyst, The, 2012, 137, 5278.	1.7	140
105	4-Hexylresorcinol sensor development based on wet-chemically prepared Co3O4@Er2O3 nanorods: A practical approach. Journal of Industrial and Engineering Chemistry, 2018, 66, 446-455.	2.9	140
106	Fabrication of 4-aminophenol sensor based on hydrothermally prepared ZnO/Yb ₂ O ₃ nanosheets. New Journal of Chemistry, 2017, 41, 9159-9169.	1.4	139
107	Investigation of potential conjugate adsorbent for efficient ultra-trace gold(III) detection and recovery. Journal of Industrial and Engineering Chemistry, 2014, 20, 3493-3501.	2.9	138
108	Efficient gold(III) detection, separation and recovery from urban mining waste using a facial conjugate adsorbent. Sensors and Actuators B: Chemical, 2014, 196, 457-466.	4.0	136

#	Article	IF	CITATIONS
109	Trace electrochemical detection of Ni2+ ions with bidentate N,N′-(ethane-1,2-diyl)bis(3,4-dimethoxybenzenesulfonamide) [EDBDMBS] as a chelating agent. Inorganica Chimica Acta, 2017, 464, 157-166.	1.2	135
110	Fabrication of cadmium ionic sensor based on (E)-4-Methyl-N′-(1-(pyridin-2-yl)ethylidene)benzenesulfonohydrazide (MPEBSH) by electrochemical approach. Journal of Organometallic Chemistry, 2017, 827, 49-55.	0.8	134
111	Nano-composite multi-wall carbon nanotubes using poly(p-phenylene terephthalamide) for enhanced electric conductivity. Journal of Environmental Chemical Engineering, 2019, 7, 103002.	3.3	132
112	Development of 3-methoxyaniline sensor probe based on thin Ag ₂ O@La ₂ O ₃ nanosheets for environmental safety. New Journal of Chemistry, 2019, 43, 4620-4632.	1.4	130
113	A mechanistic approach of chromium (VI) adsorption onto manganese oxides and boehmite. Journal of Environmental Chemical Engineering, 2020, 8, 103515.	3.3	127
114	An efficient composite material for selective lead(II) monitoring and removal from wastewater. Journal of Environmental Chemical Engineering, 2019, 7, 103087.	3.3	123
115	Mesoporous composite material for efficient lead(II) detection and removal from aqueous media. Journal of Environmental Chemical Engineering, 2019, 7, 103124.	3.3	121
116	The Utilization of Algae and Seaweed Biomass for Bioremediation of Heavy Metal-Contaminated Wastewater. Molecules, 2022, 27, 1275.	1.7	89
117	Pollutants inducing epigenetic changes and diseases. Environmental Chemistry Letters, 2020, 18, 325-343.	8.3	81
118	Ultrathin Assembles of Porous Array for Enhanced H2 Evolution. Scientific Reports, 2020, 10, 2324.	1.6	75
119	Fabrication of selective l-glutamic acid sensor in electrochemical technique from wet-chemically prepared RuO2 doped ZnO nanoparticles. Materials Chemistry and Physics, 2020, 251, 123029.	2.0	70
120	Investigation of novel nanomaterial for the removal of toxic substances from contaminated water. RSC Advances, 2019, 9, 14167-14175.	1.7	66
121	Efficient Hg(II) ionic probe development based on one-step synthesized diethyl thieno[2,3-b]thiophene-2,5-dicarboxylate (DETTDC2) onto glassy carbon electrode. Microchemical Journal, 2020, 152, 104291.	2.3	66
122	Sustainable approach for wastewater treatment using microbial fuel cells and green energy generation – A comprehensive review. Journal of Molecular Liquids, 2021, 344, 117795.	2.3	65
123	Generation of novel n-p-n (CeO2-PPy-ZnO) heterojunction for photocatalytic degradation of micro-organic pollutants. Environmental Pollution, 2022, 292, 118375.	3.7	62
124	Integrated pre-treatment stage of biosorbent – sonication for mixed brewery and restaurant effluents to enhance the photo-fermentative hydrogen production. Biomass and Bioenergy, 2021, 144, 105899.	2.9	61
125	Bromate removal from water samples using strongly basic anion exchange resin Amberlite IRA-400: kinetics, isotherms and thermodynamic studies. Desalination and Water Treatment, 2016, 57, 5781-5788.	1.0	60
126	Effect of Inorganic Salts on Ternary Equilibrium Data of Propionic Acid-Water-Solvents Systems. Journal of Applied Sciences, 2007, 7, 1053-1060.	0.1	58

#	Article	IF	CITATIONS
127	Introducing the novel composite photocatalysts to boost the performance of hydrogen (H2) production. Journal of Cleaner Production, 2021, 313, 127909.	4.6	57
128	Functionalized layered double hydroxides composite bio-adsorbent for efficient copper(II) ion encapsulation from wastewater. Journal of Environmental Management, 2021, 300, 113782.	3.8	57
129	A ligand-anchored optical composite material for efficient vanadium(<scp>ii</scp>) adsorption and detection in wastewater. New Journal of Chemistry, 2019, 43, 10324-10335.	1.4	55
130	Novel and potential chemical sensors for Au(III) ion detection and recovery in electric waste samples. Microchemical Journal, 2020, 158, 105312.	2.3	52
131	Energy challenges for a clean environment: Bangladesh's experience. Energy Reports, 2021, 7, 3373-3389.	2.5	51
132	Highly effective agro-waste based functional green adsorbents for toxic chromium(VI) ion removal from wastewater. Journal of Molecular Liquids, 2022, 347, 118327.	2.3	51
133	Synthesis of sodium dodecyl sulfate-supported nanocomposite cation exchanger: removal and recovery of Cu2+ from synthetic, pharmaceutical and alloy samples. Journal of the Iranian Chemical Society, 2015, 12, 1677-1686.	1.2	50
134	Advances in physiochemical and biotechnological approaches for sustainable metal recovery from e-waste: A critical review. Journal of Cleaner Production, 2021, 323, 129015.	4.6	50
135	Improving valuable metal ions capturing from spent Li-ion batteries with novel materials and approaches. Journal of Molecular Liquids, 2021, 338, 116703.	2.3	50
136	Towards the robust hydrogen (H2) fuel production with niobium complexes-A review. Journal of Cleaner Production, 2021, 318, 128439.	4.6	50
137	A ligand-based conjugate solid sensor for colorimetric ultra-trace gold(III) detection in urban mining waste. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 581, 123842.	2.3	44
138	A novel and potential chemical sensor for effective monitoring of Fe(II) ion in corrosion systems of water samples. Microchemical Journal, 2020, 154, 104578.	2.3	44
139	Water Purification Using Cost Effective Material Prepared from Agricultural Waste: Kinetics, Isotherms, and Thermodynamic Studies. Clean - Soil, Air, Water, 2016, 44, 1036-1045.	0.7	43
140	A snapshot of <scp>coalâ€fired</scp> power generation in <scp>Bangladesh</scp> : A <scp>demand–supply</scp> outlook. Natural Resources Forum, 2021, 45, 157-182.	1.8	43
141	One-step facile synthesis of SnO ₂ @Nd ₂ O ₃ nanocomposites for selective amidol detection in aqueous phase. New Journal of Chemistry, 2020, 44, 4952-4959.	1.4	41
142	Temporal assessment of heavy metal concentration and surface water quality representing the public health evaluation from the Meghna River estuary, Bangladesh. Applied Water Science, 2021, 11, 1.	2.8	39
143	Functional novel ligand based palladium(II) separation and recovery from e-waste using solvent-ligand approach. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 632, 127767.	2.3	29