Maria Jesus Perugorria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6049758/publications.pdf Version: 2024-02-01

	257357	254106
4,352	24	43
citations	h-index	g-index
43	43	5550
docs citations	times ranked	citing authors
	citations 43	4,35224citationsh-index4343

#	Article	IF	CITATIONS
1	Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 557-588.	8.2	1,155
2	Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nature Reviews Gastroenterology and Hepatology, 2016, 13, 261-280.	8.2	964
3	Wnt–β-catenin signalling in liver development, health and disease. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 121-136.	8.2	341
4	Serum extracellular vesicles contain protein biomarkers for primary sclerosing cholangitis and cholangiocarcinoma. Hepatology, 2017, 66, 1125-1143.	3.6	218
5	Stimulating healthy tissue regeneration by targeting the 5-HT2B receptor in chronic liver disease. Nature Medicine, 2011, 17, 1668-1673.	15.2	177
6	The tumour microenvironment and immune milieu of cholangiocarcinoma. Liver International, 2019, 39, 63-78.	1.9	109
7	Histone methyltransferase ASH1 orchestrates fibrogenic gene transcription during myofibroblast transdifferentiation. Hepatology, 2012, 56, 1129-1139.	3.6	108
8	Non-parenchymal TREM-2 protects the liver from immune-mediated hepatocellular damage. Gut, 2019, 68, 533-546.	6.1	96
9	SOX17 regulates cholangiocyte differentiation and acts as a tumor suppressor in cholangiocarcinoma. Journal of Hepatology, 2017, 67, 72-83.	1.8	81
10	Polycystic liver diseases: advanced insights into the molecular mechanisms. Nature Reviews Gastroenterology and Hepatology, 2014, 11, 750-761.	8.2	80
11	Pathobiology of inherited biliary diseases: a roadmap to understand acquired liver diseases. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 497-511.	8.2	73
12	MicroRNAâ€506 promotes primary biliary cholangitis–like features in cholangiocytes and immune activation. Hepatology, 2018, 67, 1420-1440.	3.6	72
13	The search for novel diagnostic and prognostic biomarkers in cholangiocarcinoma. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1468-1477.	1.8	72
14	Patients with Cholangiocarcinoma Present Specific RNA Profiles in Serum and Urine Extracellular Vesicles Mirroring the Tumor Expression: Novel Liquid Biopsy Biomarkers for Disease Diagnosis. Cells, 2020, 9, 721.	1.8	63
15	Pathogenesis of Cholangiocarcinoma. Annual Review of Pathology: Mechanisms of Disease, 2021, 16, 433-463.	9.6	63
16	PNPLA3 p.1148M variant is associated with greater reduction of liver fat content after bariatric surgery. Surgery for Obesity and Related Diseases, 2016, 12, 1838-1846.	1.0	60
17	TREM-2 defends the liver against hepatocellular carcinoma through multifactorial protective mechanisms. Gut, 2021, 70, 1345-1361.	6.1	59
18	Ursodeoxycholic acid inhibits hepatic cystogenesis in experimental models of polycystic liver disease. Journal of Hepatology, 2015, 63, 952-961.	1.8	56

Maria Jesus Perugorria

#	Article	IF	CITATIONS
19	Inhibition of metalloprotease hyperactivity in cystic cholangiocytes halts the development of polycystic liver diseases. Gut, 2014, 63, 1658-1667.	6.1	55
20	MicroRNA (miR)â€433 and miRâ€22 dysregulations induce histoneâ€deacetylaseâ€6 overexpression and ciliary loss in cholangiocarcinoma. Hepatology, 2018, 68, 561-573.	3.6	54
21	Tumor progression locus 2/Cot is required for activation of extracellular regulated kinase in liver injury and toll-like receptor-induced TIMP-1 gene transcription in hepatic stellate cells in mice. Hepatology, 2013, 57, 1238-1249.	3.6	41
22	Primary biliary cholangitis: A tale of epigenetically-induced secretory failure?. Journal of Hepatology, 2018, 69, 1371-1383.	1.8	35
23	Elevated interleukinâ€8 in bile of patients with primary sclerosing cholangitis. Liver International, 2016, 36, 1370-1377.	1.9	34
24	Extracellular Vesicles in Hepatobiliary Malignancies. Frontiers in Immunology, 2018, 9, 2270.	2.2	29
25	FOSL1 promotes cholangiocarcinoma via transcriptional effectors that could be therapeutically targeted. Journal of Hepatology, 2021, 75, 363-376.	1.8	29
26	E2F1 and E2F2-Mediated Repression of CPT2 Establishes a Lipid-Rich Tumor-Promoting Environment. Cancer Research, 2021, 81, 2874-2887.	0.4	27
27	Proteostasis disturbances and endoplasmic reticulum stress contribute to polycystic liver disease: New therapeutic targets. Liver International, 2020, 40, 1670-1685.	1.9	22
28	TREM-2 plays a protective role in cholestasis by acting as a negative regulator of inflammation. Journal of Hepatology, 2022, 77, 991-1004.	1.8	22
29	MicroRNAs in cholangiopathies: Potential diagnostic and therapeutic tools. Clinics and Research in Hepatology and Gastroenterology, 2016, 40, 15-27.	0.7	20
30	TPL2 Kinase Is a Crucial Signaling Factor and Mediator of NKT Effector Cytokine Expression in Immune-Mediated Liver Injury. Journal of Immunology, 2016, 196, 4298-4310.	0.4	16
31	Effect of pravastatin on the survival of patients with advanced gastric cancer. Oncotarget, 2016, 7, 4379-4384.	0.8	15
32	Novel causative genes for polycystic liver disease. Nature Reviews Gastroenterology and Hepatology, 2017, 14, 391-392.	8.2	15
33	Cholangiocarcinoma progression depends on the uptake and metabolization of extracellular lipids. Hepatology, 2022, 76, 1617-1633.	3.6	15
34	Genetics, pathobiology and therapeutic opportunities of polycystic liver disease. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 585-604.	8.2	15
35	Targeting UBC9-mediated protein hyper-SUMOylation in cystic cholangiocytes halts polycystic liver disease in experimental models. Journal of Hepatology, 2021, 74, 394-406.	1.8	14
36	Targeting NAE1-mediated protein hyper-NEDDylation halts cholangiocarcinogenesis and impacts on tumor-stroma crosstalk in experimental models. Journal of Hepatology, 2022, 77, 177-190.	1.8	11

#	Article	IF	CITATIONS
37	Bile Acids in Polycystic Liver Diseases: Triggers of Disease Progression and Potential Solution for Treatment. Digestive Diseases, 2017, 35, 275-281.	0.8	8
38	Synthetic Conjugates of Ursodeoxycholic Acid Inhibit Cystogenesis in Experimental Models of Polycystic Liver Disease. Hepatology, 2021, 73, 186-203.	3.6	7
39	Inhibition of NAEâ€dependent protein hyperâ€NEDDylation in cystic cholangiocytes halts cystogenesis in experimental models of polycystic liver disease. United European Gastroenterology Journal, 2021, 9, 848-859.	1.6	7
40	Cholangiocyteâ€ŧoâ€Hepatocyte Differentiation: A Contextâ€Đependent Process and an Opportunity for Regenerative Medicine. Hepatology, 2019, 69, 480-483.	3.6	6
41	Toward personalized medicine for intrahepatic cholangiocarcinoma: Pharmacogenomic stratification of patients. Hepatology, 2018, 68, 811-814.	3.6	4
42	O-GlcNAcylation: Undesired tripmate but an opportunity for treatment in NAFLD-HCC. Journal of Hepatology, 2017, 67, 218-220.	1.8	3
43	More insight into the diversity of cholangiocyte ciliopathies. Journal of Hepatology, 2016, 65, 1083-1085.	1.8	1