
Cesare Gennari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6049436/publications.pdf Version: 2024-02-01

CESADE GENNADI

#	Article	IF	CITATIONS
1	Regiodivergent Reductive Opening of Epoxides by Catalytic Hydrogenation Promoted by a (Cyclopentadienone)iron Complex. ACS Catalysis, 2022, 12, 235-246.	5.5	17
2	Development and Biochemical Characterization of Self-Immolative Linker Containing GnRH-III-Drug Conjugates. International Journal of Molecular Sciences, 2022, 23, 5071.	1.8	6
3	Advanced Pyrrolidineâ€Carbamate Selfâ€Immolative Spacer with Tertiary Amine Handle Induces Superfast Cyclative Drug Release. ChemMedChem, 2022, 17, .	1.6	5
4	Functionalized 2â€Hydroxybenzaldehydeâ€PEG Modules as Portable Tags for the Engagement of Protein Lysine ϵâ€Amino Groups. European Journal of Organic Chemistry, 2021, 2021, 1763-1767.	1.2	1
5	A trifunctional self-immolative spacer enables drug release with two non-sequential enzymatic cleavages. Chemical Communications, 2021, 57, 7778-7781.	2.2	7
6	Fast Cyclization of a Prolineâ€Derived Selfâ€Immolative Spacer Improves the Efficacy of Carbamate Prodrugs. Angewandte Chemie, 2020, 132, 4205-4210.	1.6	8
7	Fast Cyclization of a Prolineâ€Derived Selfâ€Immolative Spacer Improves the Efficacy of Carbamate Prodrugs. Angewandte Chemie - International Edition, 2020, 59, 4176-4181.	7.2	35
8	TUMOR TARGETING WITH INTEGRIN LIGAND - DRUG CONJUGATES. Istituto Lombardo - Accademia Di Scienze E Lettere - Rendiconti Di Scienze, 2020, , .	0.0	0
9	Recent Catalytic Applications of (Cyclopentadienone)iron Complexes. European Journal of Organic Chemistry, 2020, 2020, 3192-3205.	1.2	28
10	Multimeric Presentation of RGD Peptidomimetics Enhances Integrin Binding and Tumor Cell Uptake. Chemistry - A European Journal, 2020, 26, 7492-7496.	1.7	10
11	Innovative Linker Strategies for Tumorâ€Targeted Drug Conjugates. Chemistry - A European Journal, 2019, 25, 14740-14757.	1.7	68
12	Conjugates of Cryptophycin and RGD or <i>iso</i> DGR Peptidomimetics for Targeted Drug Delivery. ChemistryOpen, 2019, 8, 737-742.	0.9	17
13	Hydrogen-Borrowing Amination of Secondary Alcohols Promoted by a (Cyclopentadienone)iron Complex. Synthesis, 2019, 51, 3545-3555.	1.2	15
14	Chiral (cyclopentadienone)iron complexes with a stereogenic plane as pre-catalysts for the asymmetric hydrogenation of polar double bonds. Tetrahedron, 2019, 75, 1415-1424.	1.0	15
15	β-Glucuronidase triggers extracellular MMAE release from an integrin-targeted conjugate. Organic and Biomolecular Chemistry, 2019, 17, 4705-4710.	1.5	14
16	Synthesis and Biological Evaluation of RGD and <i>iso</i> DGR–Monomethyl Auristatin Conjugates Targeting Integrin α _V β ₃ . ChemMedChem, 2019, 14, 938-942.	1.6	26
17	Rational Design of Antiangiogenic Helical Oligopeptides Targeting the Vascular Endothelial Growth Factor Receptors. Frontiers in Chemistry, 2019, 7, 170.	1.8	10
18	The Importance of Detail: How Differences in Ligand Structures Determine Distinct Functional Responses in Integrin α v Î ² 3. Chemistry - A European Journal, 2019, 25, 5959-5970.	1.7	10

#	Article	IF	CITATIONS
19	A dimeric bicyclic RGD ligand displays enhanced integrin binding affinity and strong biological effects on U-373 MG glioblastoma cells. Organic and Biomolecular Chemistry, 2019, 17, 8913-8917.	1.5	4
20	Frontispiece: Innovative Linker Strategies for Tumorâ€Targeted Drug Conjugates. Chemistry - A European Journal, 2019, 25, .	1.7	0
21	Improving C=N Bond Reductions with (Cyclopentadienone)iron Complexes: Scope and Limitations. European Journal of Organic Chemistry, 2019, 2019, 647-654.	1.2	12
22	Neutrophil Elastase Promotes Linker Cleavage and Paclitaxel Release from an Integrinâ€Targeted Conjugate. Chemistry - A European Journal, 2019, 25, 1696-1700.	1.7	29
23	Synthesis and Biological Evaluation of Paclitaxel Conjugates Involving Linkers Cleavable by Lysosomal Enzymes and α _V β ₃ â€Integrin Ligands for Tumor Targeting. European Journal of Organic Chemistry, 2018, 2018, 2902-2909.	1.2	16
24	Efficient Synthesis of Amines by Ironâ€Catalyzed C=N Transfer Hydrogenation and C=O Reductive Amination. Advanced Synthesis and Catalysis, 2018, 360, 1054-1059.	2.1	43
25	Synthesis and biological evaluation of RGD and isoDGR peptidomimetic-α-amanitin conjugates for tumor-targeting. Beilstein Journal of Organic Chemistry, 2018, 14, 407-415.	1.3	30
26	Synthesis of [Bis(hexamethylene)cyclopentadienone]iron Tricarbonyl and its Application to the Catalytic Reduction of C=O Bonds. ChemCatChem, 2017, 9, 1461-1468.	1.8	34
27	Tumor Targeting with an <i>iso</i> DGR–Drug Conjugate. Chemistry - A European Journal, 2017, 23, 7910-7914.	1.7	17
28	Insights into the Binding of Cyclic RGD Peptidomimetics to α ₅ β ₁ Integrin by using Live-Cell NMR And Computational Studies. ChemistryOpen, 2017, 6, 128-136.	0.9	21
29	Targeting Integrin α _V β ₃ with Theranostic RGD-Camptothecin Conjugates Bearing a Disulfide Linker: Biological Evaluation Reveals a Complex Scenario. ChemistrySelect, 2017, 2, 4759-4766.	0.7	14
30	Use of the Trost Ligand in the Ruthenium atalyzed Asymmetric Hydrogenation of Ketones. ChemCatChem, 2017, 9, 3125-3130.	1.8	14
31	Frontispiece: Multivalency Increases the Binding Strength of RGD Peptidomimeticâ€Paclitaxel Conjugates to Integrin α _V β ₃ . Chemistry - A European Journal, 2017, 23, .	1.7	0
32	Multivalency Increases the Binding Strength of RGD Peptidomimeticâ€Paclitaxel Conjugates to Integrin α _V β ₃ . Chemistry - A European Journal, 2017, 23, 14410-14415.	1.7	27
33	Investigating the Interaction of Cyclic RGD Peptidomimetics with αVβ6 Integrin by Biochemical and Molecular Docking Studies. Cancers, 2017, 9, 128.	1.7	18
34	Asymmetric Hydrogenation of 3‣ubstituted Pyridinium Salts. Chemistry - A European Journal, 2016, 22, 9528-9532.	1.7	29
35	Expanding the Catalytic Scope of (Cyclopentadienone)iron Complexes to the Hydrogenation of Activated Esters to Alcohols. ChemCatChem, 2016, 8, 3431-3435.	1.8	27
36	Riding the Wave of Monodentate Ligand Revival: From the A/B Concept to Noncovalent Interactions. Chemical Record, 2016, 16, 2544-2560.	2.9	3

#	Article	IF	CITATIONS
37	A Mixed Ligand Approach for the Asymmetric Hydrogenation of 2â€&ubstituted Pyridinium Salts. Advanced Synthesis and Catalysis, 2016, 358, 2589-2593.	2.1	18
38	Asymmetric Transfer Hydrogenation of Ketones with Modified Grubbs Metathesis Catalysts: On the Way to a Tandem Process. Advanced Synthesis and Catalysis, 2016, 358, 515-519.	2.1	8
39	Synthesis, Characterization, and Biological Evaluation of a Dualâ€Action Ligand Targeting α _v β ₃ Integrin and VEGF Receptors. ChemistryOpen, 2015, 4, 633-641.	0.9	25
40	Assisted Tandem Catalysis: Metathesis Followed by Asymmetric Hydrogenation from a Single Ruthenium Source. Advanced Synthesis and Catalysis, 2015, 357, 2223-2228.	2.1	16
41	Synthesis of (<i>R</i>)â€BINOLâ€Derived (Cyclopentadienone)iron Complexes and Their Application in the Catalytic Asymmetric Hydrogenation of Ketones. European Journal of Organic Chemistry, 2015, 2015, 5526-5536.	1.2	45
42	Synthesis of a 4â€Vinyltetrahydrocarbazole by Palladium atalyzed Asymmetric Allylic Alkylation of Indoleâ€Containing Allylic Carbonates. European Journal of Organic Chemistry, 2015, 2015, 6669-6678.	1.2	16
43	?v?3 Integrin-Targeted Peptide/Peptidomimetic-Drug Conjugates: In-Depth Analysis of the Linker Technology. Current Topics in Medicinal Chemistry, 2015, 16, 314-329.	1.0	44
44	Cyclic <i>iso</i> DGR and RGD Peptidomimetics Containing Bifunctional Diketopiperazine Scaffolds are Integrin Antagonists. Chemistry - A European Journal, 2015, 21, 6265-6271.	1.7	33
45	Chiral (Cyclopentadienone)iron Complexes for the Catalytic Asymmetric Hydrogenation of Ketones. European Journal of Organic Chemistry, 2015, 2015, 1887-1893.	1.2	56
46	Synthesis and Biological Evaluation of RGD Peptidomimetic–Paclitaxel Conjugates Bearing Lysosomally Cleavable Linkers. Chemistry - A European Journal, 2015, 21, 6921-6929.	1.7	48
47	Synthesis and biological evaluation of dual action <i>cyclo</i> -RGD/SMAC mimetic conjugates targeting α _v l² ₃ /l̂± _v l² ₅ integrins and IAP proteins. Organic and Biomolecular Chemistry, 2014, 12, 3288-3302.	1.5	19
48	Enantioselective synthesis of 1-vinyltetrahydroisoquinolines through palladium-catalysed intramolecular allylic amidation with chiral PhthalaPhos ligands. Tetrahedron: Asymmetry, 2014, 25, 844-850.	1.8	4
49	Cyclic <i>iso</i> DGR Peptidomimetics as Lowâ€Nanomolar α _v β ₃ Integrin Ligands. Chemistry - A European Journal, 2013, 19, 3563-3567.	1.7	28
50	Determination of the binding epitope of RGD-peptidomimetics to αvβ3 and αIIbβ3 integrin-rich intact cells by NMR and computational studies. Organic and Biomolecular Chemistry, 2013, 11, 3886.	1.5	22
51	Synthesis and Biological Evaluation (in Vitro and in Vivo) of Cyclic Arginine–Glycine–Aspartate (RGD) Peptidomimetic–Paclitaxel Conjugates Targeting Integrin α _V β ₃ . Journal of Medicinal Chemistry, 2012, 55, 10460-10474.	2.9	68
52	Cyclic RGD Peptidomimetics Containing Bifunctional Diketopiperazine Scaffolds as New Potent Integrin Ligands. Chemistry - A European Journal, 2012, 18, 6195-6207.	1.7	62
53	A Library Approach to the Development of BenzaPhos: Highly Efficient Chiral Supramolecular Ligands for Asymmetric Hydrogenation. Chemistry - A European Journal, 2012, 18, 10368-10381.	1.7	33
54	Inside Cover: Cyclic RGD Peptidomimetics Containing Bifunctional Diketopiperazine Scaffolds as New Potent Integrin Ligands (Chem. Eur. J. 20/2012). Chemistry - A European Journal, 2012, 18, 6106-6106.	1.7	0

#	Article	IF	CITATIONS
55	Rhodium atalyzed Asymmetric Hydrogenation of Olefins with PhthalaPhos, a New Class of Chiral Supramolecular Ligands. Chemistry - A European Journal, 2012, 18, 1383-1400.	1.7	57
56	Stereoselectivity in (Z)-Vinylmetal Additions to the Dictyostatin C1-C9 β-Silyloxy Aldehyde. European Journal of Organic Chemistry, 2012, 2012, 144-153.	1.2	2
57	Supramolecular ligand–ligand and ligand–substrate interactions for highly selective transition metal catalysis. Dalton Transactions, 2011, 40, 4355.	1.6	115
58	Bifunctional 2,5â€Diketopiperazines as Rigid Threeâ€Dimensional Scaffolds in Receptors and Peptidomimetics. European Journal of Organic Chemistry, 2011, 2011, 217-228.	1.2	45
59	Highly Stereoselective Total Synthesis of (+)â€9â€ <i>epi</i> â€Dictyostatin and (–)â€12,13â€Bisâ€ <i>epi</i> â€dictyostatin. European Journal of Organic Chemistry, 2011, 2011, 2643-2661.	1.2	16
60	Total Synthesis of (+)â€7,11â€Helianane and (+)â€5 hloroâ€7,11â€helianane through Stereoselective Aromat Claisen Rearrangement. European Journal of Organic Chemistry, 2011, 2011, 6794-6801.	tic _{1.2}	19
61	Bifunctional 2,5â€Diketopiperazines as Efficient Organocatalysts for the Enantioselective Conjugate Addition of Aldehydes to Nitroolefins. European Journal of Organic Chemistry, 2011, 2011, 5599-5607.	1.2	26
62	A Highly Stereoselective Total Synthesis of (+)â€9â€ <i>epi</i> â€Dictyostatin. European Journal of Organic Chemistry, 2010, 2010, 5767-5771.	1.2	9
63	PhthalaPhos: Chiral Supramolecular Ligands for Enantioselective Rhodiumâ€Catalyzed Hydrogenation Reactions. Angewandte Chemie - International Edition, 2010, 49, 6633-6637.	7.2	50
64	Selective O-acylation of unprotected N-benzylserine methyl ester and O,N-acyl transfer in the formation of cyclo[Asp-Ser] diketopiperazines. Tetrahedron, 2010, 66, 9528-9531.	1.0	9
65	A Straightforward Total Synthesis of (â^') haetominine. Chemistry - A European Journal, 2009, 15, 7922-7929.	1.7	43
66	Cyclic RGDâ€Peptidomimetics Containing Bifunctional Diketopiperazine Scaffolds as New Potent Integrin Ligands. Chemistry - A European Journal, 2009, 15, 12184-12188.	1.7	58
67	The Italian Chemical Society Is 100 Years Old (Eur. J. Org. Chem. 18/2009). European Journal of Inorganic Chemistry, 2009, 2009, 2567-2569.	1.0	0
68	Combinations of Acidic and Basic Monodentate Binaphtholic Phosphites as Supramolecular Bidentate Ligands for Enantioselective Rhâ€Catalyzed Hydrogenations. European Journal of Organic Chemistry, 2009, 2009, 2539-2547.	1.2	36
69	The Italian Chemical Society Is 100 Years Old (Eur. J. Org. Chem. 19/2009). European Journal of Organic Chemistry, 2009, 2009, 3095-3097.	1.2	1
70	Chiral (salen)Co(III)(N-benzyl-l-serine)-derived phosphites: monodentate P-ligands for enantioselective catalytic applications. Tetrahedron: Asymmetry, 2009, 20, 1185-1190.	1.8	7
71	Combination of a binaphthol-derived phosphite and a C1-symmetric phosphinamine generates heteroleptic catalysts in Rh- and Pd-mediated reactions. Chemical Communications, 2009, , 3539.	2.2	29
72	Resolution of Racemic <i>N</i> â€Benzyl αâ€Amino Acids by Liquidâ€Liquid Extraction: A Practical Method Using a Lipophilic Chiral Cobalt(III) Salen Complex and Mechanistic Studies. European Journal of Organic Chemistry, 2008, 2008, 1253-1264.	1.2	38

#	Article	IF	CITATIONS
73	Highly enantioselective Rh-catalyzed hydrogenations with heterocombinations of pentafluorobenzyl- and methoxybenzyl-derived binaphthyl phosphites. Tetrahedron Letters, 2008, 49, 755-759.	0.7	28
74	Synthesis and Conformational Studies of Peptidomimetics Containing a New Bifunctional Diketopiperazine Scaffold Acting as a β-Hairpin Inducer. Journal of Organic Chemistry, 2008, 73, 652-660.	1.7	47
75	A Practical Synthesis of the C1-C9 Fragment of Dictyostatin. Synthesis, 2008, 2008, 2158-2162.	1.2	4
76	Enantioselective Rh-Catalyzed Addition of Arylboronic Acids to N-Tosylarylimines. Synlett, 2007, 2007, 2213-2216.	1.0	7
77	Natural products with taxol-like anti-tumor activity: Synthetic approaches to eleutherobin and dictyostatin. Pure and Applied Chemistry, 2007, 79, 173-180.	0.9	40
78	Efficient resolution of racemic N-benzyl β3-amino acids by iterative liquid–liquid extraction with a chiral (salen)cobalt(iii) complex as enantioselective selector. Organic and Biomolecular Chemistry, 2007, 5, 3464.	1.5	14
79	A highly stereoselective synthesis of the C10–C23 fragment of (–)-dictyostatin. Chemical Communications, 2007, , 4271.	2.2	23
80	Rh-Catalyzed Enantioselective Conjugate Addition of Arylboronic Acids with a Dynamic Library of Chiraltropos Phosphorus Ligands. Chemistry - A European Journal, 2007, 13, 1547-1558.	1.7	73
81	Synthesis of the C15–C23 fragment of dictyostatin using a highly stereoselective Carreira alkynylation. Tetrahedron, 2007, 63, 5873-5878.	1.0	21
82	Rhodium-catalyzed asymmetric reactions with a dynamic library of chiral tropos phosphorus ligands. Pure and Applied Chemistry, 2006, 78, 303-310.	0.9	26
83	Bicyclic carbohydrate-derived scaffolds for combinatorial libraries. Bioorganic and Medicinal Chemistry, 2006, 14, 3349-3367.	1.4	25
84	Enantioselective cyanosilylation of aldehydes catalysed by a diastereomeric mixture of atropisomeric thioureas. Tetrahedron: Asymmetry, 2006, 17, 999-1006.	1.8	28
85	A Formal Total Synthesis of Eleutherobin Using the Ring-Closing Metathesis (RCM) Reaction of a Densely Functionalized Diene as the Key Step: Investigation of the Unusual Kinetically Controlled RCM Stereochemistry. Chemistry - A European Journal, 2006, 12, 51-62.	1.7	49
86	A Practical Approach to the Resolution of RacemicN-Benzyl α-Amino Acids by Liquid–Liquid Extraction with a Lipophilic Chiral Salen–Cobalt(III) Complex. Angewandte Chemie - International Edition, 2006, 45, 2449-2453.	7.2	70
87	Synthesis of novel, simplified, C-7 substituted eleutheside analogues with potent microtubule-stabilizing activity. Tetrahedron, 2005, 61, 2123-2139.	1.0	26
88	Copper-Catalysed, Enantioselective Desymmetrisation ofmeso Cyclic Allylic Bis(diethyl phosphates) with Organozinc Reagents. European Journal of Organic Chemistry, 2005, 2005, 895-906.	1.2	25
89	A Formal Total Synthesis of Eleutherobin Through an Unprecedented Kinetically Controlled Ring-Closing-Metathesis Reaction of a Densely Functionalized Diene. Angewandte Chemie - International Edition, 2005, 44, 588-591.	7.2	46
90	Rh-Catalyzed Asymmetric Hydrogenation of Prochiral Olefins with a Dynamic Library of Chiral TROPOS Phosphorus Ligands. Chemistry - A European Journal, 2005, 11, 6701-6717.	1.7	86

#	Article	IF	CITATIONS
91	Copper-Catalyzed, Enantioselective Desymmetrization of meso Cyclic Allylic Bis(diethyl phosphates) with Organozinc Reagents ChemInform, 2005, 36, no.	0.1	0
92	Enantioselective conjugate addition of phenylboronic acid to enones catalysed by a chiral tropos/atropos rhodium complex at the coalescence temperature. Chemical Communications, 2005, , 5281.	2.2	46
93	A Modular Approach to a New Class of Monodentate Chiral Phosphorus Ligands and Their Application in Enantioselective Copper-Catalysed Conjugate Additions of Diethylzinc to Cyclohexenone. European Journal of Organic Chemistry, 2004, 2004, 3557-3565.	1.2	13
94	Copper Phosphoramidite-Catalyzed Enantioselective Desymmetrization of meso-Cyclic Allylic Bisdiethyl Phosphates. ChemInform, 2004, 35, no.	0.1	0
95	Rh-catalysed asymmetric hydrogenations with a dynamic library of chiral tropos phosphorus-ligands. Tetrahedron Letters, 2004, 45, 6859-6862.	0.7	40
96	Copper catalysed 1,4-addition of organozinc reagents to $\hat{1}\pm,\hat{1}^2$ -unsaturated carbonyl compounds: a mechanistic investigation. Journal of Organometallic Chemistry, 2004, 689, 2169-2176.	0.8	21
97	Copper Phosphoramidite-Catalyzed Enantioselective Desymmetrization ofmeso-Cyclic Allylic Bisdiethyl Phosphates. Organic Letters, 2003, 5, 4493-4496.	2.4	46
98	Effects of allylic and homoallylic substituents on the ring closing metathesis reaction used to synthesise simplified eleuthesides. Tetrahedron Letters, 2003, 44, 7913-7919.	0.7	49
99	Title is missing!. Angewandte Chemie, 2003, 115, 244-246.	1.6	23
100	Synthesis and Screening of New Chiral Ligands for the Copper-Catalyzed Enantioselective Allylic Substitution ChemInform, 2003, 34, no.	0.1	0
101	A Catalytic and Enantioselective Desymmetrization of meso Cyclic Allylic Bisdiethylphosphates with Organozinc Reagents ChemInform, 2003, 34, no.	0.1	0
102	Combinatorial Libraries of Chiral Ligands for Enantioselective Catalysis. ChemInform, 2003, 34, no.	0.1	0
103	A Catalytic and Enantioselective Desymmetrization of meso Cyclic Allylic Bisdiethylphosphates with Organozinc Reagents. Angewandte Chemie - International Edition, 2003, 42, 234-236.	7.2	81
104	Synthesis of novel simplified sarcodictyin/eleutherobin analogs with potent microtubule-stabilizing activity, using ring closing metathesis as the key-step. Tetrahedron, 2003, 59, 8803-8820.	1.0	41
105	Synthesis of novel simplified eleutheside analogues with potent microtubule-stabilizing activity, using ring-closing metathesis as the key-step. Tetrahedron Letters, 2003, 44, 681-684.	0.7	24
106	Combinatorial Libraries of Chiral Ligands for Enantioselective Catalysis. Chemical Reviews, 2003, 103, 3071-3100.	23.0	271
107	Synthesis and Screening of New Chiral Ligands for the Copper-Catalysed Enantioselective Allylic Substitution. Helvetica Chimica Acta, 2002, 85, 3388-3399.	1.0	37
108	Cyclative cleavage via solid-phase supported stabilized sulfur ylides: synthesis of macrocyclic lactones. Tetrahedron Letters, 2002, 43, 761-766.	0.7	33

#	Article	IF	CITATIONS
109	Enantioselective binding of dipeptides using acyclic receptors. Chemical Communications, 2001, , 1358-1359.	2.2	17
110	A carbonylative cross-coupling strategy to the total synthesis of the sarcodictyins: preliminary studies and synthesis of a cyclization precursor. Tetrahedron Letters, 2001, 42, 7421-7425.	0.7	32
111	Synthesis of a simplified sarcodictyin analogue which retains microtubule stabilising properties. Tetrahedron Letters, 2001, 42, 9187-9190.	0.7	33
112	Synthetic studies on the sarcodictyins: synthesis of fully functionalized cyclization precursors. Tetrahedron, 2001, 57, 8531-8542.	1.0	38
113	Optimization of New Chiral Ligands for the Copper-Catalysed Enantioselective Conjugate Addition of Et2Zn to Nitroolefins by High-Throughput Screening of a Parallel Library. European Journal of Organic Chemistry, 2001, 2001, 803-807.	1.2	43
114	Synthesis, Conformational Studies and Binding Properties of Acyclic Receptors for N-Protected Amino Acids and Dipeptides. European Journal of Organic Chemistry, 2001, 2001, 4625.	1.2	9
115	Discovery of a New Efficient Chiral Ligand for Copper-Catalyzed Enantioselective Michael Additions by High-Throughput Screening of a Parallel Library. Chemistry - A European Journal, 2001, 7, 2628-2634.	1.7	59
116	Discovery of a New Efficient Chiral Ligand for Copper-Catalyzed Enantioselective Michael Additions by High-Throughput Screening of a Parallel Library. Angewandte Chemie - International Edition, 2000, 39, 916-918.	7.2	79
117	Rationally Designed Bicyclic Lactams Control Different Turn Motifs and Folding Patterns in Hexapeptide Mimics. , 2000, 2000, 695-699.		16
118	Effect of Ligands and Additives on the Palladium-Promoted Carbonylative Coupling of Vinyl Stannanes and Electron-Poor Enol Triflates. Journal of Organic Chemistry, 2000, 65, 6254-6256.	1.7	85
119	Synthetic studies on sarcodictyins and eleutherobin: Synthesis of fully functionalized cyclization precursors. Tetrahedron Letters, 1999, 40, 153-156.	0.7	41
120	A trifunctional steroid-based scaffold for combinatorial chemistry. Tetrahedron Letters, 1999, 40, 2849-2852.	0.7	52
121	Ureas: New efficient Lewis base catalysts for the allylation of aldehydes. Tetrahedron Letters, 1999, 40, 3633-3634.	0.7	52
122	Novel reverse-turn mimics inhibit farnesyl transferase. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 847-852.	1.0	9
123	Solid-Phase Synthesis of Peptides Containing Reverse-Turn Mimetic Bicyclic Lactams. , 1999, 1999, 379-388.		17
124	Conformational Preferences of Peptides Containing Reverse-Turn Mimetic Bicyclic Lactams: Inverse γ-Turns versus Type-Il′ β-Turns – Insights into β-Hairpin Stability. , 1999, 1999, 389-400.		92
125	Synthesis of Chiral Vinylogous Sulfonamidopeptides (vs-Peptides). , 1998, 1998, 945-959.		17
126	Synthesis of Combinatorial Libraries of Vinylogous Sulfonamidopeptides (vs-Peptides). , 1998, 1998, 2437-2449.		17

#	Article	IF	CITATIONS
127	Hydrogen-Bonding Donor/Acceptor Scales inβ-Sulfonamidopeptides. Chemistry - A European Journal, 1998, 4, 1924-1931.	1.7	55
128	Stereocontrolled synthesis of polyketide libraries: Boron-mediated aldol reactions with aldehydes on solid support. Tetrahedron, 1998, 54, 14999-15016.	1.0	37
129	Investigation of a New Family of Chiral Ligands for Enantioselective Catalysis via Parallel Synthesis and High-Throughput Screening. Journal of Organic Chemistry, 1998, 63, 5312-5313.	1.7	114
130	Hydrogen-Bonding Donor/Acceptor Scales in β-Sulfonamidopeptides. , 1998, 4, 1924.		1
131	Computer-Assisted Design and Synthetic Applications of Chiral Enol Borinates: Novel, Highly Enantioselective Aldol Reagents. Journal of the Brazilian Chemical Society, 1998, 9, .	0.6	3
132	Rationally designed chiral enol borinates: Powerful reagents for the stereoselective synthesis of natural products. Pure and Applied Chemistry, 1997, 69, 507-512.	0.9	10
133	Taxol Semisynthesis:  A Highly Enantio- and Diastereoselective Synthesis of the Side Chain and a New Method for Ester Formation at C-13 Using Thioesters. Journal of Organic Chemistry, 1997, 62, 4746-4755.	1.7	40
134	Highly enantio- and diastereoselective boron aldol reactions of α-heterosubstituted thioacetates with aldehydes and silyl imines. Tetrahedron, 1997, 53, 5909-5924.	1.0	42
135	Reagent control in the aldol addition reaction of chiral boron enolates with chiral aldehydes. Total synthesis of (3S,4S)-Statine. Tetrahedron, 1997, 53, 5593-5608.	1.0	21
136	Computational studies on the aldol-type addition of boron enolates to imines: An ab-initio approach. Tetrahedron, 1997, 53, 7705-7714.	1.0	14
137	Combinatorial Libraries: Studies in Molecular Recognition and the Quest for New Catalysts. Liebigs Annalen, 1997, 1997, 637-647.	0.8	66
138	Semisynthese von Taxol: eine hochenantio―und â€diastereoselektive Synthese der Seitenkette und eine neue Methode zur Esterbildung an C13 unter Verwendung von Thioestern. Angewandte Chemie, 1996, 108, 1809-1812.	1.6	6
139	Conformational Studies of Chiral Vinylogous Sulfonamidopeptides. Chemistry - A European Journal, 1996, 2, 644-655.	1.7	50
140	Semisynthesis of Taxol: A Highly Enantio- and Diastereoselective Synthesis of the Side Chain and a New Method for Ester Formation at C13 Using Thioesters. Angewandte Chemie International Edition in English, 1996, 35, 1723-1725.	4.4	22
141	Boron aldol reaction of α-halosubstitued thioacetates with silyl imines: A highly enantio- and diastereoselective synthesis of aziridines. Tetrahedron Letters, 1996, 37, 3747-3750.	0.7	27
142	A new method for the solution and solid phase synthesis of chiral Î ² -sulfonopeptides under mild conditions. Tetrahedron Letters, 1996, 37, 8589-8592.	0.7	61
143	Festphasensynthese von vinylogen Sulfonylpeptiden. Angewandte Chemie, 1995, 107, 1892-1893.	1.6	12
144	Synthetische Rezeptoren aus vinylogen Sulfonylpeptiden. Angewandte Chemie, 1995, 107, 1894-1896.	1.6	17

#	Article	IF	CITATIONS
145	Solid-Phase Synthesis of Vinylogous Sulfonyl Peptides. Angewandte Chemie International Edition in English, 1995, 34, 1763-1765.	4.4	51
146	Synthetic Receptors Based on Vinylogous Sulfonyl Peptides. Angewandte Chemie International Edition in English, 1995, 34, 1765-1768.	4.4	66
147	The rational design and systematic analysis of asymmetric aldol reactions using enol borinates: Applications of transition state computer modelling. Tetrahedron: Asymmetry, 1995, 6, 2613-2636.	1.8	115
148	Mechanistic insights from ab initio calculations on a nitrogen analogue of the boron-mediated aldol reaction. Tetrahedron, 1995, 51, 4853-4866.	1.0	12
149	Origins of stereoselectivity in the addition of allyl- and crotylboronates to aldehydes: The development and application of a force field model of the transition state. AIP Conference Proceedings, 1995, , .	0.3	0
150	Reagent Control in the Aldol Addition Reaction of Chiral Boron Enolates with Chiral .alphaAmino Aldehydes. Total Synthesis of (3S,4S)-Statine. Journal of Organic Chemistry, 1995, 60, 6248-6249.	1.7	48
151	Reagent control in the aldol addition reaction of chiral boron enolates with chiral aldehydes. Tetrahedron Letters, 1994, 35, 4623-4626.	0.7	20
152	A highly enantio- and diastereoselective aldol reaction for α-heterosubstituted thioacetates. Tetrahedron Letters, 1994, 35, 4857-4860.	0.7	17
153	Computer-assisted design of chiral boron enolates: The role of ate complexes in determining aldol stereoselectivity Tetrahedron, 1994, 50, 1227-1242.	1.0	17
154	Origins of stereoselectivity in the addition of allyl- and crotylboronates to aldehydes : the development and application of a force field model of the transition state. Tetrahedron, 1994, 50, 8815-8826.	1.0	32
155	Synthesis of Sulfonamido-Pseudopeptides: New Chiral Unnatural Oligomers. Angewandte Chemie International Edition in English, 1994, 33, 2067-2069.	4.4	142
156	Synthese von Sulfonamidâ€₽seudopeptiden: neue chirale synthetische Oligomere. Angewandte Chemie, 1994, 106, 2181-2183.	1.6	23
157	Computer-Assisted Design of Chiral Boron Enolates: A Novel, Highly Enantioselective Aldol Reaction for Thioacetates and Thiopropionates. Angewandte Chemie International Edition in English, 1993, 32, 1618-1621.	4.4	39
158	Origins of π-face selectivity in the aldol reactions of chiral E-enol borinates: a computational study using transition state modelling Tetrahedron, 1993, 49, 685-696.	1.0	51
159	Stereoselective radical-mediated cyclization of norephedrine derived o-bromobenzamides: Enantioselective synthesis of 4-substituted 1,2,3,4-tetrahydroisoquinolines. Tetrahedron: Asymmetry, 1993, 4, 273-280.	1.8	25
160	Origins of stereoselectivity in the addition of chiral allyl- and crotylboranes to aldehydes: the development and application of a force field model of the transition state. Journal of Organic Chemistry, 1993, 58, 1711-1718.	1.7	29
161	Computerunterstütztes Design von chiralen Borenolaten: Eine neue, hoch enantioselektive Aldolreaktion für Thioacetate und Thiopropionate. Angewandte Chemie, 1993, 105, 1717-1719.	1.6	10
162	The rational design of highly stereoselective boron enolates using transition-state computer modeling: a novel, asymmetric anti aldol reaction for ketones. Journal of Organic Chemistry, 1992, 57, 5173-5177.	1.7	55

#	Article	IF	CITATIONS
163	A computational study of the 1,4-addition of lithium enolates to conjugated carbonyl compounds. Journal of Organic Chemistry, 1992, 57, 7029-7034.	1.7	22
164	Diastereofacial selectivity in the aldol reactions of chiral α-methyl aldehydes: a computer modelling approach Tetrahedron, 1992, 48, 4439-4458.	1.0	50
165	Stereoselective radical-mediated cyclization of norephdrine derived \hat{I}_{\pm} -iodoamides: synthesis of enantiopure pyrrolidines and trandition state modelling1. Tetrahedron, 1992, 48, 3945-3960.	1.0	32
166	Developing a force field for the transition state of the aldol reaction of enolborinates: Evaluation of the use of fixed point charges Tetrahedron, 1992, 48, 4183-4192.	1.0	18
167	Titanium tetrachloride-mediated enantioselective synthesis of trans β-lactones. Tetrahedron, 1992, 48, 5557-5564.	1.0	81
168	Asymmetric Synthesis with Enol Ethers. , 1991, , 629-660.		40
169	Acceleration of hemiacetal cleavage through hydrogen bonding: a new synthetic catalyst with balanced conformational flexibility and preorganization. Journal of Organic Chemistry, 1991, 56, 3201-3203.	1.7	11
170	A computational study of the 1,4-addition of lithium enolates to conjugated carbonyl compounds Tetrahedron Letters, 1991, 32, 823-826.	0.7	14
171	Origins of stereoselectivity in chiral boron enolate aldol reactions: A computational study using transition state modellings. Tetrahedron, 1991, 47, 3471-3484.	1.0	46
172	Stereoselective radical-mediated cyclization of norephedrine derived α-iodoamides: Experiments and TS-modelling. Tetrahedron: Asymmetry, 1991, 2, 793-796.	1.8	16
173	1,4-addition to α,β-unsaturated carbonyl compounds bearing a γ-stereocenter: A molecular mechanics model for steric interactions in the transition state Tetrahedron: Asymmetry, 1990, 1, 21-32.	1.8	36
174	Stereoselective aldol reactions of Î ³ -thiobutyrolactone: The benzaldehyde anomaly Tetrahedron Letters, 1990, 31, 2453-2456.	0.7	6
175	Peptide bond formation using an enzyme mimicking approach. Tetrahedron, 1990, 46, 7289-7300.	1.0	14
176	Peptide bond formation using an enzyme mimicking approach. Tetrahedron Letters, 1990, 31, 2929-2932.	0.7	5
177	Transition-state modeling of the aldol reaction of boron enolates: a force field approach. Journal of Organic Chemistry, 1990, 55, 3576-3581.	1.7	69
178	Auxiliary structure and asymmetric induction in the "Mukaiyama-aldol―reactions of chiral silyl ketene acetals. Tetrahedron Letters, 1989, 30, 5163-5166.	0.7	30
179	Asymmetric synthesis of 34substituted β-lactams via chiral norephedrine-derived oxazolidines Tetrahedron, 1989, 45, 7397-7404.	1.0	22
180	Chelation controlled aldol additions of the enolsilane derived from tert-butyl thioacetate : a stereosetective approach to 1^2 -methylthienamycin. Tetrahedron, 1988, 44, 5965-5974.	1.0	41

#	Article	IF	CITATIONS
181	Asymmetric synthesis of functionalized α -amino-β-hydroxy acids via chiral norephedrine-derived oxazolidines. Tetrahedron, 1988, 44, 5563-5572.	1.0	48
182	TiCl4-mediated reactions of silyl ketene acetals derived from n-methylephedrine esters:asymmetric synthesis ofl²-lactams. Tetrahedron, 1988, 44, 4221-4232.	1.0	41
183	Chelation-controlled enantioselective synthesis of key intermediates for the preparation of carbapenem antibiotics PS-5 and 1.betamethyl-PS-5. Journal of Organic Chemistry, 1988, 53, 4015-4021.	1.7	45
184	Titanium chloride-mediated reactions of the silyl ketene acetals derived from N-methylephedrine esters: an asymmetric variant of the Mukaiyama reaction. Journal of Organic Chemistry, 1987, 52, 2754-2760.	1.7	64
185	Stereoselectivity of intramolecular nitrile oxide cycloadditions to Z and E chiral alkenes. Journal of Organic Chemistry, 1987, 52, 4674-4681.	1.7	54
186	Asymmetric synthesis of trans- \hat{l}^2 -lactams through TiCl4-mediated addition to imines Tetrahedron Letters, 1987, 28, 227-230.	0.7	111
187	Theoretical studies of stereoselective aldol condensations. Journal of Organic Chemistry, 1986, 51, 612-616.	1.7	36
188	Asymmetric electrophilic amination: synthesis of .alphaamino and .alphahydrazino acids with high optical purity. Journal of the American Chemical Society, 1986, 108, 6394-6395.	6.6	217
189	Lewis acid mediated aldol condensations using thioester silyl ketene acetals. Tetrahedron, 1986, 42, 893-909.	1.0	87
190	Improved enantioselective synthesis of anti α-methyl-β-hydroxyesters through TiCl4-PPh3 mediated aldol condensation. Tetrahedron Letters, 1986, 27, 1735-1738.	0.7	63
191	High diastereoselectivity in lewis acid mediated aldol condensations using thioester silyl ketene acetals Tetrahedron Letters, 1985, 26, 797-800.	0.7	33
192	Stereoselective aldol reactions using ticl4 as stereochemical template. Tetrahedron Letters, 1985, 26, 4129-4132.	0.7	26
193	Asymetric dihydroxylations via chiral oxazolidines. Tetrahedron Letters, 1985, 26, 5459-5462.	0.7	39
194	Lewis acid promoted aldol additions of α-thiosilylketeneacetals to α-alkoxy aldehydes: diastereoselective synthesis of -α-methylene-β-hydroxy-â^,-alkoxy esters Tetrahedron Letters, 1985, 26, 6509-6512.	0.7	16
195	Stereoselective aldol additions to α-alkoxy aldehydes using thioester silyl ketene acetals,. Tetrahedron Letters, 1985, 26, 2373-2376.	0.7	27
196	Chiral α-sulphinyl hydrazones as effective reagents for stereoselective aldol-type condensation. Journal of the Chemical Society Perkin Transactions 1, 1985, , 251-254.	0.9	12
197	Enantioselective synthesis of antialphamethylbetahydroxy esters through titanium tetrachloride-mediated aldol condensation. Journal of the American Chemical Society, 1985, 107, 5812-5813.	6.6	79
198	Synthetic opportunities offered by anti .alphamethylenebetahydroxygammaalkoxy esters: stereoselective reactions at the double bond. Journal of Organic Chemistry, 1985, 50, 4442-4447.	1.7	48

#	Article	IF	CITATIONS
199	Enantioselective Synthesis of (-)-(R)-5-Hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-decanone [(-)-(R)-[6]-Gingerol]. Synthesis, 1984, 1984, 702-703.	1.2	13
200	Stereoselective aldol condensations via alkenyloxy dialkoxyboranes : mechanistic and stereochemical details. Tetrahedron, 1984, 40, 4051-4058.	1.0	27
201	Stereoselective aldol condensations via alkenyloxy dialkoxyboranes: synthetic applications using thioesters. Tetrahedron, 1984, 40, 4059-4065.	1.0	40
202	Enolboronates: New practical reagents for regioselective aldol condensations Tetrahedron Letters, 1984, 25, 2279-2282.	0.7	24
203	Stereoselective aldol condensations via enolboronates Tetrahedron Letters, 1984, 25, 2283-2286.	0.7	33
204	High diastereoface selection in an ester enolate addition to .alphaalkoxy aldehydes: stereoselective synthesis of .alphamethylenebetahydroxygammaalkoxy esters. Journal of Organic Chemistry, 1984, 49, 3784-3790.	1.7	60
205	CONFORMATIONAL CONTROL IN NATURAL PRODUCTS SYNTHESIS. , 1984, , 199-209.		Ο
206	Direct synthesis of Z-unsaturated esters. A useful modification of the horner-emmons olefination Tetrahedron Letters, 1983, 24, 4405-4408.	0.7	1,024
207	Stereoselective synthesis of α-methylene-β-hydroxy-γ-alkoxy esters from α-alkoxy aldehydes. Journal of the Chemical Society Chemical Communications, 1983, , 1112-1113.	2.0	9
208	2-Benzoylamino-2-deoxy-2-hydroxymethyl-D-hexono-1,4-lactones: synthesis from D-fructose and utilization in the total synthesis of thermozymocidin (myriocin). Journal of the Chemical Society Perkin Transactions 1, 1983, , 1613.	0.9	38
209	Biosynthesis of austdiol and synthesis of a deuterium labelled biogenetic precursor. Journal of the Chemical Society Perkin Transactions 1, 1983, , 2745.	0.9	2
210	Stereospecific Synthesis of Chiral Î \pm -Sulfinylhydrazones. Synthesis, 1982, 1982, 829-831.	1.2	30
211	6-Farnesyl-5,7-dihydroxy-4-methylphthalide oxidation mechanism in mycophenolic acid biosynthesis. Journal of the Chemical Society Perkin Transactions 1, 1982, , 365.	0.9	19
212	Total synthesis of (+)-thermozymocidin (myriocin) from D-fructose. Journal of the Chemical Society Chemical Communications, 1982, , 488.	2.0	35
213	Detection of one symmetrical precursor during the biosynthesis of the fungal metabolite austdiol using [1,2-13C2]acetate and [Me-13C]methionine. Journal of the Chemical Society Chemical Communications, 1981, , 575.	2.0	8
214	Chiral acyl anion and enolonium ion equivalents. Asymmetric synthesis of α-methoxy-aldehydes. Journal of the Chemical Society Perkin Transactions 1, 1981, , 1278-1283.	0.9	35
215	Chiral acyl anion equivalents: asymmetric synthesis of 11-deoxy-ent-prostaglandin intermediates. Journal of the Chemical Society Perkin Transactions 1, 1981, , 1284.	0.9	24
216	Chiral Formyl-Group Equivalents: Conjugate Addition to α,β-Unsaturated Ketones. Synthesis, 1981, 1981, 74-76.	1.2	21

#	Article	IF	CITATIONS
217	Biosynthesis of citrinin and synthesis of its biogenetic precursors. Journal of the Chemical Society Perkin Transactions 1, 1981, , 2594.	0.9	21
218	Biosynthesis of cochlioquinones. Journal of the Chemical Society Perkin Transactions 1, 1980, , 2686.	0.9	9
219	Biosynthesis of ascochitine and synthesis of its biogenetic precursors. Journal of the Chemical Society Perkin Transactions 1, 1980, , 2549.	0.9	10
220	Biosynthetic origin and revised structure of ascochitine, a phytotoxic fungal metabolite. Incorporation of [1-13C]- and [1,2-13C2]-acetates and [Me-13C]methionine. Journal of the Chemical Society Perkin Transactions 1, 1980, , 675.	0.9	19
221	Acetogenin synthesis. Organocopper reagents, anions of 1,3-dithians and of protected cyanohydrins as intermediates in ketide side-chain synthesis. Journal of the Chemical Society Perkin Transactions 1, 1980, , 136.	0.9	17
222	Biosynthesis of citrinin. Journal of the Chemical Society Chemical Communications, 1980, , 1132.	2.0	7
223	Biosynthesis of ascochitine: incorporation studies with advanced precursors. Journal of the Chemical Society Chemical Communications, 1979, , 492.	2.0	4
224	Chiral acyl anion equivalents: asymmetric synthesis of α-methoxytolualdehyde. Journal of the Chemical Society Chemical Communications, 1979, , 591-592.	2.0	34
225	(E,E)-10-(1,3-Dihydro-4,6-dihydroxy-7-methyl-3-oxoisobenzofuran-5-yl)4,8-dimethyldeca-4,8-dienoic acid: total synthesis and role in mycophenolic acid biosynthesis. Journal of the Chemical Society Chemical Communications, 1979, , 1021.	2.0	18
226	Biosynthesis of cochlioquinones. Journal of the Chemical Society Chemical Communications, 1978, , 679.	2.0	4
227	Synthesis of tertiary acyloins using acyl anions formed from 1,3-dithians. Total synthesis of (A±)-(2E)-1,7-dihydroxy-3,7,11-trimethyl-dodeca-2,10-dien-6-one. Journal of the Chemical Society Perkin Transactions 1, 1978, , 1036-1041.	0.9	10
228	Biosynthesis of mycophenolic acid. Oxidation of 6-farnesyl-5,7-dihydroxy-4-methylphthalide in a cell-free preparation from Penicillium brevicompactum. Journal of the Chemical Society Chemical Communications, 1978, , 434.	2.0	8