Hai Guo

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6049257/hai-guo-publications-by-year.pdf

Version: 2024-04-18

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

143 6,585 43 79 g-index

177 7,813 7.3 5.94 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
143	Insights on In-Situ Photochemistry Associated with Ozone Reduction in Guangzhou during the COVID-19 Lockdown. <i>Atmosphere</i> , 2022 , 13, 212	2.7	O
142	Estimating organic aerosol emissions from cooking in winter over the Pearl River Delta region, China. <i>Environmental Pollution</i> , 2022 , 292, 118266	9.3	0
141	Ambient volatile organic compounds at a receptor site in the Pearl River Delta region: Variations, source apportionment and effects on ozone formation <i>Journal of Environmental Sciences</i> , 2022 , 111, 104-117	6.4	3
140	Photodissociation of particulate nitrate as a source of daytime tropospheric Cl <i>Nature Communications</i> , 2022 , 13, 939	17.4	2
139	Emission characteristics, sources, and airborne fate of speciated organics in particulate matters in a Hong Kong residence <i>Indoor Air</i> , 2022 , 32, e13017	5.4	1
138	Remarkable spring increase overwhelmed hard-earned autumn decrease in ozone pollution from 2005 to 2017 at a suburban site in Hong Kong, South China <i>Science of the Total Environment</i> , 2022 , 154	1788 ²	1
137	Ambient acidic ultrafine particles in different land-use areas in two representative Chinese cities <i>Science of the Total Environment</i> , 2022 , 830, 154774	10.2	
136	Impact of NO reduction on long-term surface ozone pollution in roadside and suburban Hong Kong: Field measurements and model simulations <i>Chemosphere</i> , 2022 , 302, 134816	8.4	0
135	Accelerated toluene degradation over forests around megacities in southern China <i>Ecotoxicology</i> and Environmental Safety, 2021 , 230, 113126	7	1
134	Effectiveness of personalized air curtain in reducing exposure to airborne cough droplets. <i>Building and Environment</i> , 2021 , 108586	6.5	3
133	Real-time molecular characterization of air pollutants in a Hong Kong residence: Implication of indoor source emissions and heterogeneous chemistry. <i>Indoor Air</i> , 2021 , 31, 1340-1352	5.4	4
132	Probing Legacy and Alternative Flame Retardants in the Air of Chinese Cities. <i>Environmental Science & Environmental Science</i> & Environmental Science & Environmental	10.3	2
131	Intermediate Volatile Organic Compound Emissions from Residential Solid Fuel Combustion Based on Field Measurements in Rural China. <i>Environmental Science & Environmental Sci</i>	10.3	11
130	Characteristics, sources and evolution processes of atmospheric organic aerosols at a roadside site in Hong Kong. <i>Atmospheric Environment</i> , 2021 , 252, 118298	5.3	5
129	Isotopic compositions of atmospheric total gaseous mercury in 10 Chinese cities and implications for land surface emissions. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 6721-6734	6.8	3
128	Maternal Particulate Matter Exposure Impairs Lung Health and Is Associated with Mitochondrial Damage. <i>Antioxidants</i> , 2021 , 10,	7.1	4
127	Differential Removal of Nanoparticles on the Surface of a Thin Film Substrate. ACS Omega, 2021 , 6, 162	2890916	287

126	DDT, Chlordane, and Hexachlorobenzene in the Air of the Pearl River Delta Revisited: A Tale of Source, History, and Monsoon. <i>Environmental Science & Environmental Science & </i>	10.3	1
125	Photochemistry of ozone pollution in autumn in Pearl River Estuary, South China. <i>Science of the Total Environment</i> , 2021 , 754, 141812	10.2	4
124	Impact of long-range atmospheric transport on volatile organic compounds and ozone photochemistry at a regional background site in central China. <i>Atmospheric Environment</i> , 2021 , 246, 118	3693	2
123	Long-term variations of C-C alkyl nitrates and their sources in Hong Kong. <i>Environmental Pollution</i> , 2021 , 270, 116285	9.3	Ο
122	Ozone and its precursors in a high-elevation and highly forested region in central China: Origins, in-situ photochemistry and implications of regional transport. <i>Atmospheric Environment</i> , 2021 , 259, 118	5 4 0	1
121	PM as a potential risk factor for autism spectrum disorder: Its possible link to neuroinflammation, oxidative stress and changes in gene expression. <i>Neuroscience and Biobehavioral Reviews</i> , 2021 , 128, 534-548	9	2
120	The state of science on severe air pollution episodes: Quantitative and qualitative analysis. <i>Environment International</i> , 2021 , 156, 106732	12.9	1
119	Primary emissions and secondary production of organic aerosols from heated animal fats. <i>Science of the Total Environment</i> , 2021 , 794, 148638	10.2	Ο
118	Photochemical ozone pollution in five Chinese megacities in summer 2018. <i>Science of the Total Environment</i> , 2021 , 801, 149603	10.2	7
117	Long-term temporal variations and source changes of halocarbons in the Greater Pearl River Delta region, China. <i>Atmospheric Environment</i> , 2020 , 234, 117550	5.3	4
116	Size-segregated characteristics of organic carbon[[OC], elemental carbon[[EC] and organic matter in particulate matter[[PM]) emitted from different types of ships in China. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 1549-1564	6.8	11
115	Characterization, sources and reactivity of volatile organic compounds (VOCs) in Seoul and surrounding regions during KORUS-AQ. <i>Elementa</i> , 2020 , 8,	3.6	22
114	Formation and sink of glyoxal and methylglyoxal in a polluted subtropical environment: observation-based photochemical analysis and impact evaluation. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 11451-11467	6.8	13
113	O3 photochemistry on O3 episode days and non-O3 episode days in Wuhan, Central China. <i>Atmospheric Environment</i> , 2020 , 223, 117236	5.3	9
112	Hazardous volatile organic compounds in ambient air of China. Chemosphere, 2020, 246, 125731	8.4	29
111	Assessment of atmospheric photochemical reactivity in the Yangtze River Delta using a photochemical box model. <i>Atmospheric Research</i> , 2020 , 245, 105088	5.4	1
110	Hourly Measurements of Organic Molecular Markers in Urban Shanghai, China: Primary Organic Aerosol Source Identification and Observation of Cooking Aerosol Aging. <i>ACS Earth and Space Chemistry</i> , 2020 , 4, 1670-1685	3.2	17
109	In Situ Measurements of Molecular Markers Facilitate Understanding of Dynamic Sources of Atmospheric Organic Aerosols. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	8

An Ozone Poollin South China: Investigations on Atmospheric Dynamics and Photochemical Processes Over the Pearl River Estuary. *Journal of Geophysical Research D: Atmospheres*, **2019**, 124, 12340-1235⁵³

107	Comparison of PM2.5 pollution between an African city and an Asian metropolis. <i>Science of the Total Environment</i> , 2019 , 696, 134069	10.2	7
106	Aromatic Hydrocarbons in Urban and Suburban Atmospheres in Central China: Spatiotemporal Patterns, Source Implications, and Health Risk Assessment. <i>Atmosphere</i> , 2019 , 10, 565	2.7	7
105	Chemical characteristics of atmospheric carbonyl compounds and source identification of formaldehyde in Wuhan, Central China. <i>Atmospheric Research</i> , 2019 , 228, 95-106	5.4	18
104	Intercomparison of O₃ formation and radical chemistry in the past decade at a suburban site in Hong Kong. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 5127-5145	6.8	24
103	Overview on the spatial-temporal characteristics of the ozone formation regime in China. <i>Environmental Sciences: Processes and Impacts</i> , 2019 , 21, 916-929	4.3	39
102	Causes of a continuous summertime O₃ pollution event in Jinan, a central city in the North China Plain. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 3025-3042	6.8	39
101	Photochemical evolution of continental air masses and their influence on ozone formation over the South China Sea. <i>Science of the Total Environment</i> , 2019 , 673, 424-434	10.2	5
100	Continuous effectiveness of replacing catalytic converters on liquified petroleum gas-fueled vehicles in Hong Kong. <i>Science of the Total Environment</i> , 2019 , 648, 830-838	10.2	16
99	Spatial variation of sources and photochemistry of formaldehyde in Wuhan, Central China. <i>Atmospheric Environment</i> , 2019 , 214, 116826	5.3	14
98	Contributions of different anthropogenic volatile organic compound sources to ozone formation at a receptor site in the Pearl River Delta region and its policy implications. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 8801-8816	6.8	69
97	Atmospheric fate of peroxyacetyl nitrate in suburban Hong Kong and its impact on local ozone pollution. <i>Environmental Pollution</i> , 2019 , 252, 1910-1919	9.3	14
96	Secondary Organic Aerosol Formation from Urban Roadside Air in Hong Kong. <i>Environmental Science & Environmental Science & Env</i>	10.3	30
95	Photochemical Formation of C-C Alkyl Nitrates in Suburban Hong Kong and over the South China Sea. <i>Environmental Science & Environmental Science & Env</i>	10.3	6
94	Ozone pollution around a coastal region of South China Sea: interaction between marine and continental air. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 4277-4295	6.8	37
93	Causes of ozone pollution in summer in Wuhan, Central China. <i>Environmental Pollution</i> , 2018 , 241, 852-8	3 6 13	39
92	New particle formation and growth at a suburban site and a background site in Hong Kong. <i>Chemosphere</i> , 2018 , 193, 664-674	8.4	12
91	Assessment of pollutions and identification of sources of heavy metals in sediments from west coast of Shenzhen, China. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 3647-3656	5.1	31

90	Surface O photochemistry over the South China Sea: Application of a near-explicit chemical mechanism box model. <i>Environmental Pollution</i> , 2018 , 234, 155-166	9.3	41
89	PANBrecursor Relationship and Process Analysis of PAN Variations in the Pearl River Delta Region. <i>Atmosphere</i> , 2018 , 9, 372	2.7	8
88	Low-level summertime isoprene observed at a forested mountaintop site in southern China: implications for strong regional atmospheric oxidative capacity. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 14417-14432	6.8	21
87	A review of biomass burning: Emissions and impacts on air quality, health and climate in China. <i>Science of the Total Environment</i> , 2017 , 579, 1000-1034	10.2	551
86	Long term O₃-precursor relationships in Hong Kong: Field observation and model simulation 2017 ,		1
85	Observation of SOA tracers at a mountainous site in Hong Kong: Chemical characteristics, origins and implication on particle growth. <i>Science of the Total Environment</i> , 2017 , 605-606, 180-189	10.2	13
84	New particle formation in China: Current knowledge and further directions. <i>Science of the Total Environment</i> , 2017 , 577, 258-266	10.2	78
83	An investigation on particle emission from a new laser printer using an environmental chamber. <i>Indoor and Built Environment</i> , 2017 , 26, 1144-1154	1.8	4
82	Tropospheric volatile organic compounds in China. Science of the Total Environment, 2017, 574, 1021-10)43 0.2	104
81	Evaluation of the effectiveness of air pollution control measures in Hong Kong. <i>Environmental Pollution</i> , 2017 , 220, 87-94	9.3	27
80	Modeling C1II4 Alkyl Nitrate Photochemistry and Their Impacts on O3 Production in Urban and Suburban Environments of Hong Kong. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 10,5	3 9 -40,	5 5 6
79	Long-term O₃precursor relationships in Hong Kong: field observation and model simulation. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 10919-10935	6.8	62
78	Ambient volatile organic compounds and their effect on ozone production in Wuhan, central China. <i>Science of the Total Environment</i> , 2016 , 541, 200-209	10.2	139
77	Assessment of regional air quality resulting from emission control in the Pearl River Delta region, southern China. <i>Science of the Total Environment</i> , 2016 , 573, 1554-1565	10.2	49
76	Chemical characteristics and causes of airborne particulate pollution in warm seasons in Wuhan, central China. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 10671-10687	6.8	40
75	Effectiveness of replacing catalytic converters in LPG-fueled vehicles in Hong Kong. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 6609-6626	6.8	35
74	New insight into the spatiotemporal variability and source apportionments of C₁ti₄ alkyl nitrates in Hong Kong. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 8141-8156	6.8	12
73	Top-down estimates of benzene and toluene emissions in the Pearl River Delta and Hong Kong, China. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 3369-3382	6.8	12

72	Formaldehyde and Acetaldehyde at Different Elevations in Mountainous Areas in Hong Kong. <i>Aerosol and Air Quality Research</i> , 2016 , 16, 1868-1878	4.6	19
71	The toxic effects of indoor atmospheric fine particulate matter collected from allergic and non-allergic families in Wuhan on mouse peritoneal macrophages. <i>Journal of Applied Toxicology</i> , 2016 , 36, 596-608	4.1	7
70	Ambient Ozone Control in a Photochemically Active Region: Short-Term Despiking or Long-Term Attainment?. <i>Environmental Science & Environmental Scienc</i>	10.3	103
69	Spatiotemporal variation of ozone precursors and ozone formation in Hong Kong: Grid field measurement and modelling study. <i>Science of the Total Environment</i> , 2016 , 569-570, 1341-1349	10.2	13
68	Characterization and source identification of sub-micron particles at the HKUST Supersite in Hong Kong. <i>Science of the Total Environment</i> , 2015 , 527-528, 287-96	10.2	7
67	Re-examination of C1 [15 alkyl nitrates in Hong Kong using an observation-based model. <i>Atmospheric Environment</i> , 2015 , 120, 28-37	5.3	21
66	Simulation of ozone formation at different elevations in mountainous area of Hong Kong using WRF-CMAQ model. <i>Science of the Total Environment</i> , 2015 , 505, 939-51	10.2	59
65	Concentrations and sources of non-methane hydrocarbons (NMHCs) from 2005 to 2013 in Hong Kong: A multi-year real-time data analysis. <i>Atmospheric Environment</i> , 2015 , 103, 196-206	5.3	65
64	PM2.5 acidity at a background site in the Pearl River Delta region in fall-winter of 2007-2012. Journal of Hazardous Materials, 2015 , 286, 484-92	12.8	23
63	Observation of nucleation mode particle burst and new particle formation events at an urban site in Hong Kong. <i>Atmospheric Environment</i> , 2014 , 99, 196-205	5.3	30
62	Emissions of halocarbons from mobile vehicle air conditioning system in Hong Kong. <i>Journal of Hazardous Materials</i> , 2014 , 278, 401-8	12.8	4
61	Trends of ambient fine particles and major chemical components in the Pearl River Delta region: observation at a regional background site in fall and winter. <i>Science of the Total Environment</i> , 2014 , 497-498, 274-281	10.2	37
60	Contribution of VOC sources to photochemical ozone formation and its control policy implication in Hong Kong. <i>Environmental Science and Policy</i> , 2014 , 38, 180-191	6.2	75
59	Volatile Organic Compounds Generated in Asphalt Pavement Construction and Their Health Effects on Workers. <i>Journal of Construction Engineering and Management - ASCE</i> , 2014 , 140, 04013051	4.2	22
58	Diffusion Sampler for Measurement of Acidic Ultrafine Particles in the Atmosphere. <i>Aerosol Science and Technology</i> , 2014 , 48, 1236-1246	3.4	3
57	Atmospheric photochemical reactivity and ozone production at two sites in Hong Kong: Application of a Master Chemical Mechanismphotochemical box model. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 10567-10582	4.4	44
56	Diurnal profiles of isoprene, methacrolein and methyl vinyl ketone at an urban site in Hong Kong. <i>Atmospheric Environment</i> , 2014 , 84, 323-331	5.3	16
55	Tracer-based source apportionment of polycyclic aromatic hydrocarbons in PM2.5 in Guangzhou, southern China, using positive matrix factorization (PMF). <i>Environmental Science and Pollution Research</i> , 2013 , 20, 2398-409	5.1	37

(2010-2013)

54	Establishing a conceptual model for photochemical ozone pollution in subtropical Hong Kong. <i>Atmospheric Environment</i> , 2013 , 76, 208-220	5.3	30
53	Modelling VOC source impacts on high ozone episode days observed at a mountain summit in Hong Kong under the influence of mountain-valley breezes. <i>Atmospheric Environment</i> , 2013 , 81, 166-176	5.3	51
52	Photochemical trajectory modeling of ozone concentrations in Hong Kong. <i>Environmental Pollution</i> , 2013 , 180, 101-10	9.3	22
51	Acetone in the atmosphere of Hong Kong: Abundance, sources and photochemical precursors. <i>Atmospheric Environment</i> , 2013 , 65, 80-88	5.3	28
50	Characterization of photochemical pollution at different elevations in mountainous areas in Hong Kong. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 3881-3898	6.8	54
49	Sources and photochemistry of volatile organic compounds in the remote atmosphere of western China: results from the Mt. Waliguan Observatory. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 8551-85	5 67 8	55
48	Rush-hour aromatic and chlorinated hydrocarbons in selected subway stations of Shanghai, China. Journal of Environmental Sciences, 2012 , 24, 131-41	6.4	17
47	Aromatic hydrocarbons as ozone precursors before and after outbreak of the 2008 financial crisis in the Pearl River Delta region, south China. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		62
46	Observations of isoprene, methacrolein (MAC) and methyl vinyl ketone (MVK) at a mountain site in Hong Kong. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		16
45	Polycyclic aromatic hydrocarbons in PM2.5 in Guangzhou, southern China: spatiotemporal patterns and emission sources. <i>Journal of Hazardous Materials</i> , 2012 , 239-240, 78-87	12.8	65
44	Measuring Ambient Acidic Ultrafine Particles Using Iron Nanofilm Detectors: Method Development. <i>Aerosol Science and Technology</i> , 2012 , 46, 521-532	3.4	9
43	Observation of aerosol size distribution and new particle formation at a mountain site in subtropical Hong Kong. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 9923-9939	6.8	51
42	Multi-criteria ranking and receptor modelling of airborne fine particles at three sites in the Pearl River Delta region of China. <i>Science of the Total Environment</i> , 2011 , 409, 719-37	10.2	9
41	Sources of ambient volatile organic compounds and their contributions to photochemical ozone formation at a site in the Pearl River Delta, southern China. <i>Environmental Pollution</i> , 2011 , 159, 2310-9	9.3	146
40	Emission characteristics of nonmethane hydrocarbons from private cars and taxis at different driving speeds in Hong Kong. <i>Atmospheric Environment</i> , 2011 , 45, 2711-2721	5.3	77
39	Source apportionment of volatile organic compounds in Hong Kong homes. <i>Building and Environment</i> , 2011 , 46, 2280-2286	6.5	57
38	Which emission sources are responsible for the volatile organic compounds in the atmosphere of Pearl River Delta?. <i>Journal of Hazardous Materials</i> , 2011 , 188, 116-24	12.8	119
37	An ozone episode in the Pearl River Delta: Field observation and model simulation. <i>Journal of Geophysical Research</i> , 2010 , 115,		37

36	Emission patterns and spatiotemporal variations of halocarbons in the Pearl River Delta region, southern China. <i>Journal of Geophysical Research</i> , 2010 , 115,		27
35	On the relationship between ozone and its precursors in the Pearl River Delta: application of an observation-based model (OBM). <i>Environmental Science and Pollution Research</i> , 2010 , 17, 547-60	5.1	79
34	Characterization of particle number concentrations and PM2.5 in a school: influence of outdoor air pollution on indoor air. <i>Environmental Science and Pollution Research</i> , 2010 , 17, 1268-78	5.1	125
33	Carbonyl sulfide, dimethyl sulfide and carbon disulfide in the Pearl River Delta of southern China: Impact of anthropogenic and biogenic sources. <i>Atmospheric Environment</i> , 2010 , 44, 3805-3813	5.3	23
32	Assessing photochemical ozone formation in the Pearl River Delta with a photochemical trajectory model. <i>Atmospheric Environment</i> , 2010 , 44, 4199-4208	5.3	84
31	Receptor modeling of source apportionment of Hong Kong aerosols and the implication of urban and regional contribution. <i>Atmospheric Environment</i> , 2009 , 43, 1159-1169	5.3	77
30	Formaldehyde and volatile organic compounds in Hong Kong homes: concentrations and impact factors. <i>Indoor Air</i> , 2009 , 19, 206-17	5.4	101
29	Ultrafine particles in indoor air of a school: possible role of secondary organic aerosols. <i>Environmental Science & Environmental Science & Environme</i>	10.3	83
28	Source origins, modeled profiles, and apportionments of halogenated hydrocarbons in the greater Pearl River Delta region, southern China. <i>Journal of Geophysical Research</i> , 2009 , 114,		39
27	Concurrent observations of air pollutants at two sites in the Pearl River Delta and the implication of regional transport. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 7343-7360	6.8	106
26	Impact of ventilation scenario on air exchange rates and on indoor particle number concentrations in an air-conditioned classroom. <i>Atmospheric Environment</i> , 2008 , 42, 757-768	5.3	98
25	Size distribution and new particle formation in subtropical eastern Australia. <i>Environmental Chemistry</i> , 2008 , 5, 382	3.2	11
24	Reply to Comment on Long-term atmospheric measurements of C1C5 alkyl nitrates in the Pearl River Delta region of southeast Chinall Atmospheric Environment, 2007, 41, 7371-7372	5.3	
23	Long-term variation of PM2.5 levels and composition at rural, urban, and roadside sites in Hong Kong: Increasing impact of regional air pollution. <i>Atmospheric Environment</i> , 2007 , 41, 9427-9434	5.3	61
22	C1th volatile organic compounds in the atmosphere of Hong Kong: Overview of atmospheric processing and source apportionment. <i>Atmospheric Environment</i> , 2007 , 41, 1456-1472	5.3	190
21	Long-term atmospheric measurements of C1\$\mathbb{\tilde{L}}5 alkyl nitrates in the Pearl River Delta region of southeast China. <i>Atmospheric Environment</i> , 2006 , 40, 1619-1632	5.3	39
20	Regional and local contributions to ambient non-methane volatile organic compounds at a polluted rural/coastal site in Pearl River Delta, China. <i>Atmospheric Environment</i> , 2006 , 40, 2345-2359	5.3	125
19	Influence of regional pollution outflow on the concentrations of fine particulate matter and visibility in the coastal area of southern China. <i>Atmospheric Environment</i> , 2005 , 39, 6463-6474	5.3	123

18	Measurements of Trace Gases in the Inflow of South China Sea Background Air and Outflow of Regional Pollution at Tai O, Southern China. <i>Journal of Atmospheric Chemistry</i> , 2005 , 52, 295-317	3.2	81	
17	Indoor air quality investigation at air-conditioned and non-air-conditioned markets in Hong Kong. <i>Science of the Total Environment</i> , 2004 , 323, 87-98	10.2	41	
16	Seasonal and diurnal variations of volatile organic compounds (VOCs) in the atmosphere of Hong Kong. <i>Science of the Total Environment</i> , 2004 , 322, 155-66	10.2	178	
15	Source contributions to ambient VOCs and CO at a rural site in eastern China. <i>Atmospheric Environment</i> , 2004 , 38, 4551-4560	5.3	172	
14	Characterization of hydrocarbons, halocarbons and carbonyls in the atmosphere of Hong Kong. <i>Chemosphere</i> , 2004 , 57, 1363-72	8.4	76	
13	Source apportionment of ambient non-methane hydrocarbons in Hong Kong: application of a principal component analysis/absolute principal component scores (PCA/APCS) receptor model. <i>Environmental Pollution</i> , 2004 , 129, 489-98	9.3	239	
12	Risk assessment of exposure to volatile organic compounds in different indoor environments. <i>Environmental Research</i> , 2004 , 94, 57-66	7.9	333	
11	Indoor air quality in ice skating rinks in Hong Kong. Environmental Research, 2004, 94, 327-35	7.9	25	
10	Characterization of Dust Storms to Hong Kong in April 1998. Water, Air and Soil Pollution, 2003, 3, 213-	229	23	
9	Source characterization of BTEX in indoor microenvironments in Hong Kong. <i>Atmospheric Environment</i> , 2003 , 37, 73-82	5.3	97	
8	Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. <i>Atmospheric Environment</i> , 2003 , 37, 5307-5317	5.3	463	
7	Inter-comparison of air pollutant concentrations in different indoor environments in Hong Kong. <i>Atmospheric Environment</i> , 2002 , 36, 1929-1940	5.3	151	
6	Characterization of photochemical pollution at different elevations in mountainous areas in Hong Kong	g	2	
5	Effectiveness of replacing catalytic converters in LPG-fueled vehicles in Hong Kong		1	
4	Concurrent observations of air pollutants at two sites in the Pearl River Delta and the implication of regional transport		3	
3	Top-down estimates of benzene and toluene emissions in Pearl River Delta and Hong Kong, China		1	
2	Observation of aerosol size distribution and new particle formation at a mountain site in subtropical Hong Kong		1	
1	Sources and photochemistry of volatile organic compounds in the remote atmosphere of western China: results from the Mt. Waliguan Observatory		1	