
Tania Garcia-Mendiola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6049009/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metallacarboranes on the Road to Anticancer Therapies: Cellular Uptake, DNA Interaction, and Biological Evaluation of Cobaltabisdicarbollide [COSAN] ^{â°`} . Chemistry - A European Journal, 2018, 24, 17239-17254.	1.7	78
2	Carbon nanodots based biosensors for gene mutation detection. Sensors and Actuators B: Chemical, 2018, 256, 226-233.	4.0	76
3	Electrochemical sensor for sulfite determination based on iron hexacyanoferrate film modified electrodes. Sensors and Actuators B: Chemical, 2005, 106, 803-809.	4.0	72
4	Electrocatalytic oxidation of methanol and other short chain aliphatic alcohols on glassy carbon electrodes modified with conductive films derived from Nill-(N,N′-bis(2,5-dihydroxybenzylidene)-1,2-diaminobenzene). Sensors and Actuators B: Chemical, 2008, 130, 730-738.	4.0	64
5	Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing. Nanoscale, 2016, 8, 9842-9851.	2.8	51
6	Single-Mismatch Position-Sensitive Detection of DNA Based on a Bifunctional Ruthenium Complex. Analytical Chemistry, 2008, 80, 77-84.	3.2	47
7	Electrochemiluminescent nanostructured DNA biosensor for SARS-CoV-2 detection. Talanta, 2022, 240, 123203.	2.9	40
8	A MoS2 platform and thionine-carbon nanodots for sensitive and selective detection of pathogens. Biosensors and Bioelectronics, 2021, 189, 113375.	5.3	39
9	Metallacarboranes as tunable redox potential electrochemical indicators for screening of gene mutation. Chemical Science, 2016, 7, 5786-5797.	3.7	35
10	Electrochemiluminescence Biosensors Using Screen-Printed Electrodes. Biosensors, 2020, 10, 118.	2.3	35
11	Comprehensive study of interactions between DNA and new electroactive Schiff base ligandsApplication to the detection of singly mismatched Helicobacter pylori sequences. Biosensors and Bioelectronics, 2007, 22, 2675-2681.	5.3	34
12	Breast cancer biomarker detection through the photoluminescence of epitaxial monolayer MoS2 flakes. Scientific Reports, 2020, 10, 16039.	1.6	33
13	Grafted Azure A modified electrodes as disposable β-nicotinamide adenine dinucleotide sensors. Analytica Chimica Acta, 2012, 747, 84-91.	2.6	31
14	Disposable DNA biosensor based on thin-film gold electrodes for selective Salmonella detection. Sensors and Actuators B: Chemical, 2012, 161, 1030-1037.	4.0	29
15	Architectures based on the use of gold nanoparticles and ruthenium complexes as a new route to improve genosensor sensitivity. Biosensors and Bioelectronics, 2008, 24, 184-190.	5.3	28
16	Functionalization of a Few-Layer Antimonene with Oligonucleotides for DNA Sensing. ACS Applied Nano Materials, 2020, 3, 3625-3633.	2.4	26
17	Carbon nanodot–based electrogenerated chemiluminescence biosensor for miRNA-21 detection. Mikrochimica Acta, 2021, 188, 398.	2.5	25
18	Scaffold electrodes based on thioctic acid-capped gold nanoparticles coordinated Alcohol Dehydrogenase and Azure A films for high performance biosensor. Bioelectrochemistry, 2015, 106, 335-342.	2.4	20

TANIA GARCIA-MENDIOLA

#	Article	IF	CITATIONS
19	Effects of Ionic Strength and Probe DNA Length on the Electrochemical Impedance Spectroscopic Response of Biosensors. Electroanalysis, 2011, 23, 100-107.	1.5	19
20	Bifunctional carbon nanodots for highly sensitive HER2 determination based on electrochemiluminescence. Sensors and Actuators B: Chemical, 2021, 343, 130096.	4.0	19
21	Nanostructured rough gold electrodes as platforms to enhance the sensitivity of electrochemical genosensors. Analytica Chimica Acta, 2013, 788, 141-147.	2.6	18
22	Methylene Blue functionalized carbon nanodots combined with different shape gold nanostructures for sensitive and selective SARS-CoV-2 sensing. Sensors and Actuators B: Chemical, 2022, 369, 132217.	4.0	18
23	Influence of carbon nanodots on DNA-Thionine interaction. Application to breast cancer diagnosis. Electrochimica Acta, 2020, 353, 136522.	2.6	17
24	Dual-Stage DNA Sensing: Recognition and Detection. Analytical Chemistry, 2008, 80, 9443-9449.	3.2	16
25	ZnO nanowire-based fluorometric enzymatic assays for lactate and cholesterol. Mikrochimica Acta, 2020, 187, 180.	2.5	16
26	Amplification-free detection of SARS-CoV-2 using gold nanotriangles functionalized with oligonucleotides. Mikrochimica Acta, 2022, 189, 171.	2.5	16
27	Disposable sensors for rapid screening of mutated genes. Analytical and Bioanalytical Chemistry, 2010, 398, 1385-1393.	1.9	14
28	Dyes as bifunctional markers of DNA hybridization on surfaces and mutation detection. Bioelectrochemistry, 2016, 111, 115-122.	2.4	14
29	Simple diazonium chemistry to develop specific gene sensing platforms. Analytica Chimica Acta, 2014, 813, 41-47.	2.6	13
30	Diazonium salt click chemistry based multiwall carbon nanotube electrocatalytic platforms. Sensors and Actuators B: Chemical, 2015, 211, 559-568.	4.0	12
31	Enhanced Performance of Reagent-Less Carbon Nanodots Based Enzyme Electrochemical Biosensors. Sensors, 2019, 19, 5576.	2.1	12
32	Interactions of Schiff-base ligands with gold nanoparticles: structural, optical and electrocatalytic studies. Physical Chemistry Chemical Physics, 2011, 13, 5668.	1.3	11
33	Electrochemical DNA base pairs quantification and endonuclease cleavage detection. Biosensors and Bioelectronics, 2011, 27, 40-45.	5.3	10
34	Sol–gel derived gold nanoparticles biosensing platform for Escherichia coli detection. Sensors and Actuators B: Chemical, 2013, 182, 307-314.	4.0	8
35	Fluorescent C-NanoDots for rapid detection of BRCA1, CFTR and MRP3 gene mutations. Mikrochimica Acta, 2019, 186, 293.	2.5	8
36	Neutral Red-carbon nanodots for selective fluorescent DNA sensing. Analytical and Bioanalytical Chemistry, 2022, 414, 5537-5548.	1.9	7

#	Article	IF	CITATIONS
	Screening of Specific Gene Mutations Associated with Cystic Fibrosis. Electroanalysis, 2014, 26, 1362-1372.	1.5	6
	Electrochemically driven phenothiazine modification of carbon nanodots. Nano Research, 2018, 11, 6405-6416.	5.8	6
39	Paving the way to point of care (POC) devices for SARS-CoV-2 detection. Talanta, 2022, 247, 123542.	2.9	5
40	Potential application of metallacarboranes as an internal reference: an electrochemical comparative study to ferrocene. Chemical Communications, 2022, 58, 4196-4199.	2.2	4
41	Frontispiece: Metallacarboranes on the Road to Anticancer Therapies: Cellular Uptake, DNA Interaction, and Biological Evaluation of Cobaltabisdicarbollide [COSAN]â^'. Chemistry - A European Journal, 2018, 24, .	1.7	0