Oliver Hobert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6048866/publications.pdf

Version: 2024-02-01

10956 14702 20,173 211 71 127 citations h-index g-index papers 336 336 336 15894 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Gene Regulation by Transcription Factors and MicroRNAs. Science, 2008, 319, 1785-1786.	6.0	842
2	A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature, 2003, 426, 845-849.	13.7	707
3	PCR Fusion-Based Approach to Create Reporter Gene Constructs for Expression Analysis in Transgenic <i>C. elegans</i>	0.8	589
4	Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nature Immunology, 2003, 4, 124-131.	7.0	548
5	Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature, 2019, 571, 63-71.	13.7	534
6	Starvation-Induced Transgenerational Inheritance of Small RNAs in C.Âelegans. Cell, 2014, 158, 277-287.	13.5	448
7	Functions of LIM-homeobox genes. Trends in Genetics, 2000, 16, 75-83.	2.9	447
8	Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions. Nature Structural and Molecular Biology, 2006, 13, 849-851.	3.6	391
9	Functional mapping of neurons that control locomotory behavior inCaenorhabditis elegans. Journal of Neurobiology, 2003, 56, 178-197.	3.7	357
10	Molecular topography of an entire nervous system. Cell, 2021, 184, 4329-4347.e23.	13.5	328
11	MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature, 2004, 430, 785-789.	13.7	319
12	The Molecular Diversity of Glycosaminoglycans Shapes Animal Development. Annual Review of Cell and Developmental Biology, 2006, 22, 375-407.	4.0	317
13	Transgenerational Inheritance of an Acquired Small RNA-Based Antiviral Response in C.Âelegans. Cell, 2011, 147, 1248-1256.	13.5	316
14	CloudMap: A Cloud-Based Pipeline for Analysis of Mutant Genome Sequences. Genetics, 2012, 192, 1249-1269.	1.2	281
15	A cellular and regulatory map of the cholinergic nervous system of C. elegans. ELife, 2015, 4, .	2.8	279
16	Ultrastructural Features of the Adult Hermaphrodite Gonad of Caenorhabditis elegans: Relations between the Germ Line and Soma. Developmental Biology, 1999, 212, 101-123.	0.9	278
17	The Taxonomy of Developmental Control in Caenorhabditis elegans., 1998, 282, 2033-2041.		275
18	A regulatory cascade of three homeobox genes, <i>ceh-10</i> , <i>ttx-3</i> and <i>ceh-23</i> , controls cell fate specification of a defined interneuron class in <i>C. elegans</i> . Development (Cambridge), 2001, 128, 1951-1969.	1.2	261

#	Article	IF	CITATIONS
19	Modular Control of Glutamatergic Neuronal Identity in C.Âelegans by Distinct Homeodomain Proteins. Cell, 2013, 155, 659-673.	13.5	260
20	MicroRNAs acting in a double-negative feedback loop to control a neuronal cell fate decision. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12449-12454.	3.3	251
21	Regulation of Interneuron Function in the C. elegans Thermoregulatory Pathway by the ttx-3 LIM Homeobox Gene. Neuron, 1997, 19, 345-357.	3.8	250
22	Regulatory logic of neuronal diversity: Terminal selector genes and selector motifs. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20067-20071.	3.3	242
23	Differential Sulfations and Epimerization Define Heparan Sulfate Specificity in Nervous System Development. Neuron, 2004, 41, 723-736.	3.8	236
24	C. elegans Mutant Identification with a One-Step Whole-Genome-Sequencing and SNP Mapping Strategy. PLoS ONE, 2010, 5, e15435.	1.1	229
25	Genomic cis-Regulatory Architecture and trans-Acting Regulators of a Single Interneuron-Specific Gene Battery in C. elegans. Developmental Cell, 2004, 6, 757-770.	3.1	220
26	Gene regulatory logic of dopamine neuron differentiation. Nature, 2009, 458, 885-889.	13.7	220
27	The neuronal genome of Caenorhabditis elegans. WormBook, 2013, , 1-106.	5.3	220
28	Left–right asymmetry in the nervous system: the Caenorhabditis elegans model. Nature Reviews Neuroscience, 2002, 3, 629-640.	4.9	219
29	Direct Conversion of <i>C. elegans</i> Germ Cells into Specific Neuron Types. Science, 2011, 331, 304-308.	6.0	219
30	LIM homeobox gene-dependent expression of biogenic amine receptors in restricted regions of the C. elegans nervous system. Developmental Biology, 2003, 263, 81-102.	0.9	215
31	Caenorhabditis elegans mutant allele identification by whole-genome sequencing. Nature Methods, 2008, 5, 865-867.	9.0	214
32	A Conserved LIM Protein That Affects Muscular Adherens Junction Integrity and Mechanosensory Function in Caenorhabditis elegans. Journal of Cell Biology, 1999, 144, 45-57.	2.3	197
33	NEWINSIGHTS INTO THEDIVERSITY ANDFUNCTION OFNEURONALIMMUNOGLOBULINSUPERFAMILYMOLECULES. Annual Review of Neuroscience, 2003, 26, 207-238.	5.0	197
34	Regulation of Terminal Differentiation Programs in the Nervous System. Annual Review of Cell and Developmental Biology, 2011, 27, 681-696.	4.0	192
35	Common logic of transcription factor and microRNA action. Trends in Biochemical Sciences, 2004, 29, 462-468.	3.7	186
36	Terminal Selectors of Neuronal Identity. Current Topics in Developmental Biology, 2016, 116, 455-475.	1.0	184

#	Article	IF	CITATIONS
37	Coordinated regulation of cholinergic motor neuron traits through a conserved terminal selector gene. Nature Neuroscience, 2012, 15, 205-214.	7.1	170
38	A transcriptional regulatory cascade that controls left/right asymmetry in chemosensory neurons of C. elegans. Genes and Development, 2003, 17, 2123-2137.	2.7	161
39	A Toolkit and Robust Pipeline for the Generation of Fosmid-Based Reporter Genes in C. elegans. PLoS ONE, 2009, 4, e4625.	1.1	160
40	Molecular architecture of a miRNA-regulated 3′ UTR. Rna, 2008, 14, 1297-1317.	1.6	156
41	Heparan sulfate proteoglycan-dependent induction of axon branching and axon misrouting by the Kallmann syndrome gene kal-1. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6346-6351.	3.3	155
42	Maintenance of postmitotic neuronal cell identity. Nature Neuroscience, 2014, 17, 899-907.	7.1	155
43	The molecular signature and <i>cis</i> -regulatory architecture of a <i>C. elegans</i> gustatory neuron. Genes and Development, 2007, 21, 1653-1674.	2.7	151
44	Behavioral plasticity inC. elegans: Paradigms, circuits, genes. Journal of Neurobiology, 2003, 54, 203-223.	3.7	148
45	A C. elegans CLIC-like Protein Required for Intracellular Tube Formation and Maintenance. Science, 2003, 302, 2134-2137.	6.0	146
46	Regulatory Logic of Pan-Neuronal Gene Expression in C.Âelegans. Neuron, 2015, 87, 733-750.	3.8	139
47	A cellular and regulatory map of the GABAergic nervous system of C. elegans. ELife, 2016, 5, .	2.8	139
48	Neuronal identity control by terminal selectors in worms, flies, and chordates. Current Opinion in Neurobiology, 2019, 56, 97-105.	2.0	139
49	Plasticity of the Electrical Connectome of C.Âelegans. Cell, 2019, 176, 1174-1189.e16.	13.5	136
50	NeuroPAL: A Multicolor Atlas for Whole-Brain Neuronal Identification in C.Âelegans. Cell, 2021, 184, 272-288.e11.	13.5	132
51	Control of Neural Development and Function in a Thermoregulatory Network by the LIM Homeobox Gene <i>lin-11</i>). Journal of Neuroscience, 1998, 18, 2084-2096.	1.7	119
52	Removal of Polycomb Repressive Complex 2 Makes C.Âelegans Germ Cells Susceptible to Direct Conversion into Specific Somatic Cell Types. Cell Reports, 2012, 2, 1178-1186.	2.9	119
53	Searching for Neuronal Left/Right Asymmetry: Genomewide Analysis of Nematode Receptor-Type Guanylyl Cyclases. Genetics, 2006, 173, 131-149.	1.2	115
54	A Conserved Postsynaptic Transmembrane Protein Affecting Neuromuscular Signaling in Caenorhabditis elegans. Journal of Neuroscience, 2004, 24, 2191-2201.	1.7	114

#	Article	IF	CITATIONS
55	Immunoglobulin-Domain Proteins Required for Maintenance of Ventral Nerve Cord Organization. Science, 2002, 295, 686-690.	6.0	110
56	Sex-specific pruning of neuronal synapses in Caenorhabditis elegans. Nature, 2016, 533, 206-211.	13.7	109
57	Unique homeobox codes delineate all the neuron classes of C.Âelegans. Nature, 2020, 584, 595-601.	13.7	108
58	Hypoxia activates a latent circuit for processing gustatory information in C. elegans. Nature Neuroscience, 2010, 13, 610-614.	7.1	106
59	The molecular and gene regulatory signature of a neuron. Trends in Neurosciences, 2010, 33, 435-445.	4.2	104
60	Early Embryonic Programming of Neuronal Left/Right Asymmetry in C. elegans. Current Biology, 2006, 16, 2279-2292.	1.8	101
61	Lateralized Gustatory Behavior of C. elegans Is Controlled by Specific Receptor-Type Guanylyl Cyclases. Current Biology, 2009, 19, 996-1004.	1.8	101
62	Reporter gene fusions. WormBook, 2006, , 1-23.	5.3	99
63	An Interneuronal Chemoreceptor Required for Olfactory Imprinting in C. elegans. Science, 2005, 309, 787-790.	6.0	96
64	Oxygen levels affect axon guidance and neuronal migration in Caenorhabditis elegans. Nature Neuroscience, 2008, 11, 894-900.	7.1	96
65	The LIM and POU homeobox genes <i>ttx-3</i> and <i>unc-86</i> act as terminal selectors in distinct cholinergic and serotonergic neuron types. Development (Cambridge), 2014, 141, 422-435.	1.2	93
66	An atlas of Caenorhabditis elegans chemoreceptor expression. PLoS Biology, 2018, 16, e2004218.	2.6	93
67	Differential Functions of the C. elegans FGF Receptor in Axon Outgrowth and Maintenance of Axon Position. Neuron, 2004, 42, 367-374.	3.8	91
68	Neurogenesis in the nematode Caenorhabditis elegans. WormBook, 2010, , 1-24.	5.3	89
69	Two Neuronal, Nuclear-Localized RNA Binding Proteins Involved in Synaptic Transmission. Current Biology, 2003, 13, 1317-1323.	1.8	88
70	Analysis of Multiple Ethyl Methanesulfonate-Mutagenized < i > Caenorhabditis elegans < /i > Strains by Whole-Genome Sequencing. Genetics, 2010, 185, 417-430.	1.2	88
71	A map of terminal regulators of neuronal identity in <i>Caenorhabditis elegans</i> Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, 474-498.	5.9	88
72	MAQGene: software to facilitate C. elegans mutant genome sequence analysis. Nature Methods, 2009, 6, 549-549.	9.0	86

#	Article	IF	CITATIONS
73	Revisiting Neuronal Cell Type Classification in Caenorhabditis elegans. Current Biology, 2016, 26, R1197-R1203.	1.8	86
74	Linking Asymmetric Cell Division to the Terminal Differentiation Program of Postmitotic Neurons in C. elegans. Developmental Cell, 2009, 16, 563-575.	3.1	85
75	The CeNGEN Project: The Complete Gene Expression Map of an Entire Nervous System. Neuron, 2018, 99, 430-433.	3.8	85
76	Chloride intracellular channel 4 is involved in endothelial proliferation and morphogenesis in vitro. Angiogenesis, 2009, 12, 209-220.	3.7	83
77	Automated screening for mutants affecting dopaminergic-neuron specification in C. elegans. Nature Methods, 2008, 5, 869-872.	9.0	81
78	Neurexin controls plasticity of a mature, sexually dimorphic neuron. Nature, 2018, 553, 165-170.	13.7	76
79	The i>lin-11 / i>LIM homeobox gene specifies olfactory and chemosensory neuron fates in i>C. elegans / i>. Development (Cambridge), 2001, 128, 3269-3281.	1.2	76
80	Caenorhabditis elegans ABL-1 antagonizes p53-mediated germline apoptosis after ionizing irradiation. Nature Genetics, 2004, 36, 906-912.	9.4	74
81	A combinatorial regulatory signature controls terminal differentiation of the dopaminergic nervous system in <i>C. elegans</i> . Genes and Development, 2013, 27, 1391-1405.	2.7	74
82	Diversification of C.Âelegans Motor Neuron Identity via Selective Effector Gene Repression. Neuron, 2017, 93, 80-98.	3.8	74
83	Embryonic Priming of a miRNA Locus Predetermines Postmitotic Neuronal Left/Right Asymmetry in C.Âelegans. Cell, 2012, 151, 1229-1242.	13.5	72
84	miRNAs Play a Tune. Cell, 2007, 131, 22-24.	13.5	71
85	PHYTOCHROME C Is an Essential Light Receptor for Photoperiodic Flowering in the Temperate Grass, <i>Brachypodium distachyon</i> . Genetics, 2014, 198, 397-408.	1.2	70
86	Coordinated control of terminal differentiation and restriction of cellular plasticity. ELife, 2017, 6, .	2.8	70
87	Sexually Dimorphic Differentiation of a C.Âelegans Hub Neuron Is Cell Autonomously Controlled by a Conserved Transcription Factor. Current Biology, 2017, 27, 199-209.	1.8	69
88	BRN3-type POU Homeobox Genes Maintain the Identity of Mature Postmitotic Neurons in Nematodes and Mice. Current Biology, 2018, 28, 2813-2823.e2.	1.8	69
89	Isolation and developmental expression analysis of Enx-1, a novel mouse Polycomb group gene. Mechanisms of Development, 1996, 55, 171-184.	1.7	66
90	Spatiotemporal control of a novel synaptic organizer molecule. Nature, 2015, 523, 83-87.	13.7	66

#	Article	IF	Citations
91	Extracellular Sugar Modifications Provide Instructive and Cell-Specific Information for Axon-Guidance Choices. Current Biology, 2008, 18, 1978-1985.	1.8	64
92	Development of left/right asymmetry in the Caenorhabditis elegans nervous system: From zygote to postmitotic neuron. Genesis, 2014, 52, 528-543.	0.8	64
93	Transcriptional Control of the Terminal Fate of Monoaminergic Neurons. Annual Review of Neuroscience, 2011, 34, 153-184.	5.0	63
94	Specification of the nervous system. WormBook, 2005, , 1-19.	5.3	63
95	Cis-regulatory mechanisms of left/right asymmetric neuron-subtype specification in <i>C. elegans</i> Development (Cambridge), 2009, 136, 147-160.	1.2	62
96	Transcriptional Coordination of Synaptogenesis and Neurotransmitter Signaling. Current Biology, 2015, 25, 1282-1295.	1.8	62
97	Genetic Screens for <i>Caenorhabditis elegans </i> Mutants Defective in Left/Right Asymmetric Neuronal Fate Specification. Genetics, 2007, 176, 2109-2130.	1.2	60
98	Expansion microscopy of C. elegans. ELife, 2020, 9, .	2.8	59
99	Architecture of a MicroRNA-controlled Gene Regulatory Network That Diversifies Neuronal Cell Fates. Cold Spring Harbor Symposia on Quantitative Biology, 2006, 71, 181-188.	2.0	58
100	Functional dissection of the C. elegans cell adhesion molecule SAX-7, a homologue of human L1. Molecular and Cellular Neurosciences, 2008, 37, 56-68.	1.0	54
101	Temporal and Spatial Regulation of MicroRNA Activity with Photoactivatable Cantimirs. ACS Chemical Biology, 2011, 6, 1332-1338.	1.6	54
102	Characterization of <i>Caenorhabditis elegans</i> Homologs of the Down Syndrome Candidate Gene DYRK1A. Genetics, 2003, 163, 571-580.	1.2	54
103	Evolution of neuronal anatomy and circuitry in two highly divergent nematode species. ELife, 2019, 8, .	2.8	53
104	The Impact of Whole Genome Sequencing on Model System Genetics: Get Ready for the Ride. Genetics, 2010, 184, 317-319.	1.2	51
105	A Neurotransmitter Atlas of the <i>Caenorhabditis elegans </i> Male Nervous System Reveals Sexually Dimorphic Neurotransmitter Usage. Genetics, 2017, 206, 1251-1269.	1.2	51
106	An unusual Zn-finger/FH2 domain protein controls a left/right asymmetric neuronal fate decision in C. elegans. Development (Cambridge), 2006, 133, 3317-3328.	1.2	47
107	A Novel Eph Receptor-Interacting IgSF Protein Provides C. elegans MotoneuronsÂwith Midline Guidepost Function. Current Biology, 2006, 16, 1871-1883.	1.8	46
108	The neurexin superfamily of Caenorhabditis elegans. Gene Expression Patterns, 2011, 11, 144-150.	0.3	46

#	Article	IF	Citations
109	Homeobox genes and the specification of neuronal identity. Nature Reviews Neuroscience, 2021, 22, 627-636.	4.9	46
110	A novel C. elegans zinc finger transcription factor, lsy-2, required for the cell type-specific expression of the lsy-6 microRNA. Development (Cambridge), 2005, 132, 5451-5460.	1.2	43
111	Mapping Functional Domains of Chloride Intracellular Channel (CLIC) Proteins in Vivo. Journal of Molecular Biology, 2006, 359, 1316-1333.	2.0	43
112	Vector-free DNA constructs improve transgene expression in C. elegans. Nature Methods, 2008, 5, 3-3.	9.0	43
113	A Genome-Wide RNAi Screen for Factors Involved in Neuronal Specification in Caenorhabditis elegans. PLoS Genetics, 2011, 7, e1002109.	1.5	43
114	The <i>C. elegans</i> Tailless/TLX transcription factor <i>nhr-67</i> controls neuronal identity and left/right asymmetric fate diversification. Development (Cambridge), 2009, 136, 2933-2944.	1.2	42
115	Diverse Functions of MicroRNAs in Nervous System Development. Current Topics in Developmental Biology, 2012, 99, 115-143.	1.0	42
116	Atypical Transcriptional Activation by TCF via a Zic Transcription Factor in C.Âelegans Neuronal Precursors. Developmental Cell, 2015, 33, 737-745.	3.1	42
117	An intersectional gene regulatory strategy defines subclass diversity of C. elegans motor neurons. ELife, 2017, 6, .	2.8	42
118	Comparing Platforms for C. elegans Mutant Identification Using High-Throughput Whole-Genome Sequencing. PLoS ONE, 2008, 3, e4012.	1.1	40
119	Homeotic Transformations of Neuronal Cell Identities. Trends in Neurosciences, 2015, 38, 751-762.	4.2	40
120	Timing mechanism of sexually dimorphic nervous system differentiation. ELife, 2019, 8, .	2.8	40
121	Lineage programming: navigating through transient regulatory states via binary decisions. Current Opinion in Genetics and Development, 2010, 20, 362-368.	1.5	37
122	Silencing of Repetitive DNA Is Controlled by a Member of an Unusual <i>Caenorhabditis elegans</i> Gene Family. Genetics, 2017, 207, 529-545.	1.2	37
123	Defining Specificity Determinants of cGMP Mediated Gustatory Sensory Transduction in <i>Caenorhabditis elegans</i>	1.2	36
124	<i>C. elegans</i> SoxB genes are dispensable for embryonic neurogenesis but required for terminal differentiation of specific neuron types. Development (Cambridge), 2015, 142, 2464-77.	1.2	35
125	A Competition Mechanism for a Homeotic Neuron Identity Transformation in C. elegans. Developmental Cell, 2015, 34, 206-219.	3.1	35
126	Chapter 6 Looking Beyond Development: Maintaining Nervous System Architecture. Current Topics in Developmental Biology, 2009, 87, 175-194.	1.0	34

#	Article	IF	Citations
127	Postmitotic diversification of olfactory neuron types is mediated by differential activities of the HMG $\hat{a}\in box$ transcription factor SOX $\hat{a}\in 2$. EMBO Journal, 2015, 34, 2574-2589.	3.5	34
128	From genes to function: the <i>C. elegans</i> genetic toolbox. Wiley Interdisciplinary Reviews: Developmental Biology, 2012, 1, 114-137.	5.9	33
129	Transcription factor autoregulation is required for acquisition and maintenance of neuronal identity. Development (Cambridge), 2019, 146, .	1.2	33
130	Sexually Dimorphic unc-6/Netrin Expression Controls Sex-Specific Maintenance of Synaptic Connectivity. Current Biology, 2018, 28, 623-629.e3.	1.8	32
131	CisOrtho: a program pipeline for genome-wide identification of transcription factor target genes using phylogenetic footprinting. BMC Bioinformatics, 2004, 5, 27.	1.2	31
132	DIG-1, a novel giant protein, non-autonomously mediates maintenance of nervous system architecture. Development (Cambridge), 2006, 133, 3329-3340.	1.2	31
133	The Groucho ortholog UNC-37 interacts with the short Groucho-like protein LSY-22 to control developmental decisions in <i>C. elegans</i>	1.2	31
134	Notch-Dependent Induction of Left/Right Asymmetry in C.Âelegans Interneurons and Motoneurons. Current Biology, 2011, 21, 1225-1231.	1.8	30
135	The SWI/SNF Chromatin Remodeling Complex Selectively Affects Multiple Aspects of Serotonergic Neuron Differentiation. Genetics, 2013, 194, 189-198.	1.2	30
136	Cis-regulatory Mutations in the Caenorhabditis elegans Homeobox Gene Locus cog-1 Affect Neuronal Development. Genetics, 2009, 181, 1679-1686.	1.2	29
137	Two distinct types of neuronal asymmetries are controlled by the <i>Caenorhabditis elegans</i> zinc finger transcription factor <i>die-1</i> Genes and Development, 2014, 28, 34-43.	2.7	29
138	Unconventional function of an Achaete-Scute homolog as a terminal selector of nociceptive neuron identity. PLoS Biology, 2018, 16, e2004979.	2.6	29
139	Past experience shapes sexually dimorphic neuronal wiring through monoaminergic signalling. Nature, 2018, 561, 117-121.	13.7	29
140	Identification of spatial and temporal cues that regulate postembryonic expression of axon maintenance factors in the C. elegansventral nerve cord. Development (Cambridge), 2003, 130, 599-610.	1.2	28
141	Gene Regulation: Enhancers Stepping Out of the Shadow. Current Biology, 2010, 20, R697-R699.	1.8	28
142	The Secreted Immunoglobulin Domain Proteins ZIG-5 and ZIG-8 Cooperate with L1CAM/SAX-7 to Maintain Nervous System Integrity. PLoS Genetics, 2012, 8, e1002819.	1.5	28
143	Brn3/POUâ€Nê€type POU homeobox genesâ€"Paradigmatic regulators of neuronal identity across phylogeny. Wiley Interdisciplinary Reviews: Developmental Biology, 2020, 9, e374.	5.9	28
144	Development and maintenance of neuronal architecture at the ventral midline of C. elegans. Current Opinion in Neurobiology, 2003, 13, 70-78.	2.0	27

#	Article	IF	Citations
145	Progressive Degeneration of Dopaminergic Neurons through TRP Channel-Induced Cell Death. Journal of Neuroscience, 2014, 34, 5738-5746.	1.7	27
146	The Prop1-like homeobox gene unc-42 specifies the identity of synaptically connected neurons. ELife, 2021, 10 , .	2.8	27
147	Temporal transitions in the post-mitotic nervous system of Caenorhabditis elegans. Nature, 2021, 600, 93-99.	13.7	27
148	The connectome of the <scp><i>Caenorhabditis elegans</i></scp> pharynx. Journal of Comparative Neurology, 2020, 528, 2767-2784.	0.9	26
149	A Genetic Screen for Neurite Outgrowth Mutants in Caenorhabditis elegans Reveals a New Function for the F-box Ubiquitin Ligase Component LIN-23. Genetics, 2004, 166, 1253-1267.	1.2	25
150	The Small, Secreted Immunoglobulin Protein ZIG-3 Maintains Axon Position in <i>Caenorhabditis elegans</i>	1.2	24
151	Maintenance of Neuronal Laterality in Caenorhabditis elegans Through MYST Histone Acetyltransferase Complex Components LSY-12, LSY-13 and LIN-49. Genetics, 2010, 186, 1497-1502.	1.2	24
152	Restriction of Cellular Plasticity of Differentiated Cells Mediated by Chromatin Modifiers, Transcription Factors and Protein Kinases. G3: Genes, Genomes, Genetics, 2019, 9, 2287-2302.	0.8	22
153	DAF-16/FoxO and DAF-12/VDR control cellular plasticity both cell-autonomously and via interorgan signaling. PLoS Biology, 2021, 19, e3001204.	2.6	22
154	Ubiquitin-dependent regulation of a conserved DMRT protein controls sexually dimorphic synaptic connectivity and behavior. ELife, 2020, 9, .	2.8	21
155	Modular Organization of <i>Cis</i> -regulatory Control Information of Neurotransmitter Pathway Genes in <i>Caenorhabditis elegans</i> Genetics, 2020, 215, 665-681.	1.2	18
156	The enteric nervous system of the C. elegans pharynx is specified by the Sine oculis-like homeobox gene ceh-34. ELife, 2022, 11, .	2.8	18
157	Pax genes in Caenorhabditis elegans: a new twist. Trends in Genetics, 1999, 15, 214-216.	2.9	17
158	Developmental control of lateralized neuron size in the nematode Caenorhabditis elegans. Neural Development, 2010, 5, 33.	1.1	17
159	Questions over the scientific basis of epigenome project. Nature, 2010, 464, 487-487.	13.7	17
160	Nematode nuclear receptors as integrators of sensory information. Current Biology, 2021, 31, 4361-4366.e2.	1.8	17
161	Neuron-type specific regulation of a 3′UTR through redundant and combinatorially acting <i>ci>cis</i> -regulatory elements. Rna, 2010, 16, 349-363.	1.6	16
162	TargetOrtho: A Phylogenetic Footprinting Tool to Identify Transcription Factor Targets. Genetics, 2014, 197, 61-76.	1.2	16

#	Article	IF	CITATIONS
163	Temporal, Spatial, Sexual and Environmental Regulation of the Master Regulator of Sexual Differentiation in C.Âelegans. Current Biology, 2020, 30, 3604-3616.e3.	1.8	16
164	In silico analysis of the transcriptional regulatory logic of neuronal identity specification throughout the C. elegans nervous system. ELife, 2021, 10, .	2.8	16
165	Robust regulatory architecture of pan-neuronal gene expression. Current Biology, 2022, 32, 1715-1727.e8.	1.8	16
166	Maintaining a memory by transcriptional autoregulation. Current Biology, 2011, 21, R146-R147.	1.8	15
167	Morphological Diversity of C.Âelegans Sensory Cilia Instructed by the Differential Expression of an Immunoglobulin Domain Protein. Current Biology, 2017, 27, 1782-1790.e5.	1.8	15
168	Molecular Mechanisms of Sexually Dimorphic Nervous System Patterning in Flies and Worms. Annual Review of Cell and Developmental Biology, 2021, 37, 519-547.	4.0	13
169	A panel of fluorophore-tagged alleles. MicroPublication Biology, 2020, 2020, .	0.1	13
170	Uses of GFP in Caenorhabditis Elegans. Methods of Biochemical Analysis, 2005, 47, 203-226.	0.2	12
171	Developmental Regulation of Whole Cell Capacitance and Membrane Current in Identified Interneurons in C. elegans. Journal of Neurophysiology, 2006, 95, 3665-3673.	0.9	12
172	SLC17A6/7/8 Vesicular Glutamate Transporter Homologs in Nematodes. Genetics, 2020, 214, 163-178.	1.2	11
173	Piecemeal regulation of convergent neuronal lineages by bHLH transcription factors in <i>Caenorhabditis elegans</i> Lovelopment (Cambridge), 2021, 148, .	1.2	11
174	Wnt asymmetry and the terminal division of neuronal progenitors. Cell Cycle, 2009, 8, 1973-1978.	1.3	10
175	A Left/Right Asymmetric Neuronal Differentiation Program Is Controlled by the <i>Caenorhabditis elegans</i> LSY-27 Zinc-Finger Transcription Factor. Genetics, 2011, 188, 753-759.	1.2	10
176	Microbeam irradiation of C. elegans nematode in microfluidic channels. Radiation and Environmental Biophysics, 2013, 52, 531-537.	0.6	9
177	A <i>Caenorhabditis elegans</i> Zinc Finger Transcription Factor, <i>ztf-6</i> , Required for the Specification of a Dopamine Neuron-Producing Lineage. G3: Genes, Genomes, Genetics, 2018, 8, 17-26.	0.8	7
178	Nervous System Development: Flies and Worms Converging on Neuron Identity Control. Current Biology, 2018, 28, R1154-R1157.	1.8	7
179	Visualizing the organization and differentiation of the male-specific nervous system of <i>C. elegans</i> . Development (Cambridge), 2021, 148, .	1.2	7
180	Statistical Atlas of C. elegans Neurons. Lecture Notes in Computer Science, 2020, , 119-129.	1.0	7

#	Article	lF	CITATIONS
181	The immunoglobulin superfamily in Caenorhabditis elegans and Drosophila melanogaster. Development (Cambridge), 2004, 131, 2237-2238.	1.2	6
182	A nervous system-specific subnuclear organelle in <i>Caenorhabditis elegans</i> . Genetics, 2021, 217, 1-17.	1.2	6
183	Temporal transitions in the postembryonic nervous system of the nematode Caenorhabditis elegans: Recent insights and open questions. Seminars in Cell and Developmental Biology, 2023, 142, 67-80.	2.3	6
184	Small Immunoglobulin Domain Proteins at Synapses and the Maintenance of Neuronal Features. Neuron, 2016, 89, 239-241.	3.8	5
185	A novel null allele of gene. MicroPublication Biology, 2018, 2018, .	0.1	5
186	Introduction: Behavioral genetics?The third century. Journal of Neurobiology, 2003, 54, 1-3.	3.7	4
187	Sexual Dimorphism: Mystery Neurons Control Sex-Specific Behavioral Plasticity. Current Biology, 2015, 25, R1170-R1172.	1.8	3
188	Sexâ€specific pheromone responses in Caenorhabditis elegans. EMBO Reports, 2019, 20, .	2.0	3
189	Demixing Calcium Imaging Data in C. elegans via Deformable Non-negative Matrix Factorization. Lecture Notes in Computer Science, 2020, , 14-24.	1.0	3
190	MicroRNAs: All Gone and Then What?. Current Biology, 2005, 15, R387-R389.	1.8	2
191	Development. Current Opinion in Neurobiology, 2010, 20, 2-5.	2.0	2
192	Olfactory Imprinting: A Worm's Memory of Things Past. Current Biology, 2017, 27, R1108-R1110.	1.8	2
193	Neuronal identity specification in the nematode Caenorhabditis elegans. , 2020, , 599-616.		2
194	The field of neurogenetics: where it stands and where it is going. Genetics, 2021, 218, .	1.2	2
195	An isoform-specific allele of the locus. MicroPublication Biology, 2019, 2019, .	0.1	2
196	An antibody staining protocol variation for nematodes that adds heat-induced antigen retrieval (HIAR). MicroPublication Biology, 2019, 2019, .	0.1	2
197	Unlike Drosophila elav, the elav orthologue is not panneuronally expressed. MicroPublication Biology, 2019, 2019, .	0.1	2
198	The bHLH-PAS gene is expressed in the AVH, not AVJ interneurons. MicroPublication Biology, 2021, 2021, .	0.1	2

#	Article	IF	CITATIONS
199	Extending Our Experimental Reach: Toolbox Reviews in GENETICS. Genetics, 2012, 192, 1-1.	1.2	1
200	Sexual Dimorphisms in the Nervous System of the Nematode Caenorhabditis elegans., 2017, , 149-159.		1
201	Soma/Germline Interactions In Caenorhabditis Elegans Gonad. Microscopy and Microanalysis, 1999, 5, 1072-1073.	0.2	O
202	Methods to Study Nervous System Laterality in the Caenorhabditis elegans Model System. Neuromethods, 2017, , 591-608.	0.2	0
203	Editorial overview: Neuronal Identity. Current Opinion in Neurobiology, 2019, 56, iii-iv.	2.0	O
204	The field of neurogenetics: where it stands and where it is going. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	0
205	Molecular mechanisms of maintaining nervous system architecture. FASEB Journal, 2009, 23, 74.3.	0.2	O
206	New alleles of the lin-22/Hairy bHLH transcription factor. MicroPublication Biology, 2019, 2019, .	0.1	0
207	Nibbling 405 kb off the X: Viable deletion alleles eliminating 50 protein coding genes, including a chromatin factor involved in neuronal development. MicroPublication Biology, 2019, 2019, .	0.1	O
208	A missense mutation separates distinct functions of the Zic-family transcription factor REF-2. MicroPublication Biology, 2020, 2020, .	0.1	0
209	A new anterior pharyngeal region specific fluorescent co-transformation marker. MicroPublication Biology, 2019, 2019, .	0.1	0
210	an unusual homeobox gene. MicroPublication Biology, 2020, 2020, .	0.1	0
211	High-speed, high-content volumetric microscopy with sub-cellular resolution applied to cell-identity resolved C. elegans. , 2022, , .		0