
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6048719/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Siloxane polyacrylic sol-gel coatings with alkly and perfluoroalkyl chains: Synthesis, composition, thermal properties and log-term corrosion protection. Applied Surface Science, 2022, 574, 151578.	3.1	17
2	The Effect of Surface Pretreatment of Aluminum Alloy 7075-T6 on the Subsequent Inhibition by Cerium(III) Acetate in Chloride-Containing Solution. Journal of the Electrochemical Society, 2022, 169, 011504.	1.3	8
3	Superhydrophobic Aluminium Surface to Enhance Corrosion Resistance and Obtain Self-Cleaning and Anti-Icing Ability. Molecules, 2022, 27, 1099.	1.7	12
4	Investigations of the Thermal Parameters of Hybrid Sol–Gel Coatings Using Nondestructive Photothermal Techniques. Energies, 2022, 15, 4122.	1.6	5
5	The influence of length of alkyl chain on the chemical structure and corrosion resistance of silica-polyacrylic hybrid coatings on structural steel. Progress in Organic Coatings, 2021, 150, 105982.	1.9	12
6	Simplistic correlations between molecular electronic properties and inhibition efficiencies: Do they really exist?. Corrosion Science, 2021, 179, 108856.	3.0	86
7	The effect of surface preparation on the protective properties of Al2O3 and HfO2 thin films deposited on cp-titanium by atomic layer deposition. Electrochimica Acta, 2021, 366, 137431.	2.6	10
8	Synergistic effect of 2-mercaptobenzimidazole and octylphosphonic acid as corrosion inhibitors for copper and aluminium – An electrochemical, XPS, FTIR and DFT study. Corrosion Science, 2021, 182, 109082.	3.0	115
9	The synergistic effect of cerium acetate and sodium sulphate on corrosion inhibition of AA2024-T3 at various temperatures. Electrochimica Acta, 2021, 370, 137664.	2.6	20
10	Roles of Chloride Ions in the Formation of Corrosion Protective Films on Copper. Journal of the Electrochemical Society, 2021, 168, 031504.	1.3	11
11	<i>Technical Note:</i> Does Cr6+ Really Exist? Difference Between Charge and Oxidation State and How to Record Them. Corrosion, 2021, 77, 696-699.	0.5	3
12	Study Of Mercaptobenzimidazoles As Inhibitors For Copper Corrosion: Down to the Molecular Scale. Journal of the Electrochemical Society, 2021, 168, 051504.	1.3	18
13	The Effects of Perfluoroalkyl and Alkyl Backbone Chains, Spacers, and Anchor Groups on the Performance of Organic Compounds as Corrosion Inhibitors for Aluminum Investigated Using an Integrative Experimental-Modeling Approach. Journal of the Electrochemical Society, 2021, 168, 071506.	1.3	8
14	Al ₂ O ₃ and HfO ₂ Atomic Layers Deposited in Single and Multilayer Configurations on Titanium and on Stainless Steel for Biomedical Applications. Journal of the Electrochemical Society, 2021, 168, 071510.	1.3	3
15	Hybrid sol-gel coatings applied on anodized AA2024-T3 for active corrosion protection. Surface and Coatings Technology, 2021, 419, 127251.	2.2	30
16	Scrutinizing the importance of surface chemistry versus surface roughness for aluminium / sol-gel film adhesion. Surfaces and Interfaces, 2021, 26, 101417.	1.5	6
17	Corrosion resistance of crystalline and amorphous CuZr alloys in NaCl aqueous environment and effect of corrosion inhibitors. Journal of Alloys and Compounds, 2021, 879, 160464.	2.8	12

#	Article	IF	CITATIONS
19	How relevant are molecular electronic parameters for predicting corrosion inhibition efficiency: imidazoles as corrosion inhibitors of Cu/Zr materials in NaCl solution. Corrosion Science, 2021, 193, 109900.	3.0	16
20	Degradation of Sol-Gel Acrylic Coatings Based on Si and Zr Investigated Using Electrochemical Impedance, Infrared and X-Ray Photoelectron Spectroscopies. Frontiers in Materials, 2021, 8, .	1.2	6
21	The Effect of Deposition Parameters on the Properties of CeCl3 and LaCl3 Conversion Coatings Deposited on Three Al-Based Substrates. Corrosion, 2020, 76, 18-38.	0.5	5
22	Survival rate of total hip replacements with matched and with mixed components with 10.7 years mean follow-up. HIP International, 2020, , 112070002097271.	0.9	4
23	Electrochemical Behavior and Self-Sealing Ability of Zirconium Conversion Coating Applied on Aluminum Alloy 3005 in 0.5 M NaCl Solution. Journal of the Electrochemical Society, 2020, 167, 021509.	1.3	17
24	The effect of copolymerisation on the performance of acrylate-based hybrid sol-gel coating for corrosion protection of AA2024-T3. Progress in Organic Coatings, 2020, 147, 105701.	1.9	12
25	Easy and Fast Fabrication of Self-Cleaning and Anti-Icing Perfluoroalkyl Silane Film on Aluminium. Coatings, 2020, 10, 234.	1.2	23
26	The Effect of the Methyl and Ethyl Group of the Acrylate Precursor in Hybrid Silane Coatings Used for Corrosion Protection of Aluminium Alloy 7075-T6. Coatings, 2020, 10, 172.	1.2	21
27	On the importance of time-resolved electrochemical evaluation in corrosion inhibitor-screening studies. Npj Materials Degradation, 2020, 4, .	2.6	18
28	DFT study of n-alkyl carboxylic acids on oxidized aluminum surfaces: From standalone molecules to self-assembled-monolayers. Applied Surface Science, 2020, 525, 146156.	3.1	30
29	Prolonged protection, by zirconium conversion coatings, of AlSi7Mg0.3 aluminium alloy in chloride solution. Corrosion Science, 2020, 169, 108615.	3.0	25
30	Acrylate-Based Hybrid Sol-Gel Coating for Corrosion Protection of AA7075-T6 in Aircraft Applications: The Effect of Copolymerization Time. Polymers, 2020, 12, 948.	2.0	22
31	Editors' Choice—The Effect of Anchor Group and Alkyl Backbone Chain on Performance of Organic Compounds as Corrosion Inhibitors for Aluminum Investigated Using an Integrative Experimental-Modeling Approach. Journal of the Electrochemical Society, 2020, 167, 061509.	1.3	29
32	Comparison of the Electrochemical Behaviour and Self-sealing of Zirconium Conversion Coatings Applied on Aluminium Alloys of series 1xxx to 7xxx. Journal of the Electrochemical Society, 2020, 167, 111506.	1.3	13
33	Corrosion resistance of cerium-conversion coatings formed from cerium(III) salts on aluminium alloy 7075-T6. Studia Universitatis Babes-Bolyai Chemia, 2020, 65, 227-244.	0.1	5
34	Mechanistic insight on the combined effect of albumin and hydrogen peroxide on surface oxide composition and extent of metal release from Ti6Al4V. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 858-867.	1.6	23
35	Protection of Aluminum Alloy 3003 in Sodium Chloride and Simulated Acid Rain Solutions by Commercial Conversion Coatings Containing Zr and Cr. Coatings, 2019, 9, 563.	1.2	12
36	Electrochemical, Surface-Analytical, and Computational DFT Study of Alkaline Etched Aluminum Modified by Carboxylic Acids for Corrosion Protection and Hydrophobicity. Journal of the Electrochemical Society, 2019, 166, C3131-C3146.	1.3	37

#	Article	IF	CITATIONS
37	Study of the synergistic effect of cerium acetate and sodium sulphate on the corrosion inhibition of AA2024-T3. Electrochimica Acta, 2019, 308, 337-349.	2.6	31
38	One-step ultrasound fabrication of corrosion resistant, self-cleaning and anti-icing coatings on aluminium. Surface and Coatings Technology, 2019, 369, 175-185.	2.2	24
39	The effects of cerium ions on the curing, polymerisation and condensation of hybrid sol-gel coatings. Journal of Non-Crystalline Solids, 2019, 510, 93-100.	1.5	16
40	The influence of additional salts on corrosion inhibition by cerium(III) acetate in the protection of AA7075-T6 in chloride solution. Corrosion Science, 2019, 149, 108-122.	3.0	37
41	Contemporary Modes of Corrosion Protection and Functionalization of Materials. Acta Chimica Slovenica, 2019, 66, 511-533.	0.2	21
42	Corrosion behaviour and chemical stability of transparent hybrid sol-gel coatings deposited on aluminium in acidic and alkaline solutions. Progress in Organic Coatings, 2018, 124, 286-295.	1.9	33
43	Review—Conversion Coatings Based on Zirconium and/or Titanium. Journal of the Electrochemical Society, 2018, 165, C127-C144.	1.3	124
44	Hybrid sol–gel coatings based on GPTMS/TEOS containing colloidal SiO2 and cerium nitrate for increasing corrosion protection of aluminium alloy 7075-T6. Journal of Sol-Gel Science and Technology, 2018, 85, 546-557.	1.1	43
45	Risk of cancer after primary total hip replacement: The influence of bearings, cementation and the material of the stem. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 89, 234-239.	1.2	15
46	Self-Healing Effect of Hybrid Sol-Gel Coatings Based on GPTMS, TEOS, SiO ₂ Nanoparticles and Ce(NO ₃) ₃ Applied on Aluminum Alloy 7075-T6. Journal of the Electrochemical Society, 2018, 165, C213-C225.	1.3	42
47	The Effect of Cerium Ions on the Structure, Porosity and Electrochemical Properties of Si/Zr-Based Hybrid Sol-Gel Coatings Deposited on Aluminum. Metals, 2018, 8, 248.	1.0	16
48	Corrosion of aluminium alloy AlSi7Mg0.3 in artificial sea water with added sodium sulphide. Corrosion Science, 2018, 144, 54-73.	3.0	55
49	Characterization of selfâ€assembled layers made with stearic acid, benzotriazole, or 2â€mercaptobenzimidazole on surface of copper for corrosion protection in simulated urban rain. Materials and Corrosion - Werkstoffe Und Korrosion, 2017, 68, 30-41.	0.8	16
50	Effects of mechanical and chemical pre-treatments on the morphology and composition of surfaces of aluminium alloys 7075-T6 and 2024-T3. Corrosion Science, 2017, 119, 46-59.	3.0	63
51	How relevant is the adsorption bonding of imidazoles and triazoles for their corrosion inhibition of copper?. Corrosion Science, 2017, 124, 25-34.	3.0	64
52	Rare earth chloride and nitrate salts as individual and mixed inhibitors for aluminium alloy 7075-T6 in chloride solution. Corrosion Engineering Science and Technology, 2017, 52, 201-211.	0.7	25
53	Conversion Coatings Based on Rare Earth Nitrates and Chlorides for Corrosion Protection of Aluminum Alloy 7075-T6. Corrosion, 2017, 73, 822-843.	0.5	11
54	Biocorrosion Special Issue. Corrosion, 2017, 73, 1399-1400.	0.5	2

#	Article	IF	CITATIONS
55	pH and metal concentration of synovial fluid of osteoarthritic joints and joints with metal replacements. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 2507-2515.	1.6	19
56	From In Vitro to Retrieval Studies of Orthopedic Implants. Corrosion, 2017, 73, 1496-1509.	0.5	14
5 7	Results of Revision of Total HIP Arthroplasty for Alumina Ceramic-on-Ceramic Bearing Fracture. HIP International, 2016, 26, 237-243.	0.9	11
58	Surface Treatments of Titanium with Antibacterial Agents for Implant Applications. Modern Aspects of Electrochemistry, 2016, , 1-87.	0.2	2
59	Sol-gel synthesis, characterization and properties of TiO2 and Ag-TiO2 coatings on titanium substrate. Surface and Coatings Technology, 2016, 307, 790-799.	2.2	26
60	Corrosion protection of brasses and zinc in simulated urban rain. Part II. The combination of inhibitors benzotriazole and 2â€mercaptobenzimidazole with stearic acid. Materials and Corrosion - Werkstoffe Und Korrosion, 2016, 67, 92-103.	0.8	12
61	Corrosion Inhibition of Pure Aluminium and Alloys AA2024-T3 and AA7075-T6 by Cerium(III) and Cerium(IV) Salts. Journal of the Electrochemical Society, 2016, 163, C85-C93.	1.3	77
62	Effect of anodization on the surface characteristics and electrochemical behaviour of zirconium in artificial saliva. Materials Science and Engineering C, 2016, 62, 458-466.	3.8	29
63	Elaboration and characterization of fluorohydroxyapatite and fluoroapatite solâ^'gel coatings on CoCrMo alloy. Journal of Alloys and Compounds, 2016, 665, 355-364.	2.8	17
64	Composition, structure and morphology of hybrid acrylate-based sol–gel coatings containing Si and Zr composed for protective applications. Surface and Coatings Technology, 2016, 286, 388-396.	2.2	30
65	Corrosion protection of brasses and zinc in simulated urban rain. Materials and Corrosion - Werkstoffe Und Korrosion, 2015, 66, 1402-1413.	0.8	7
66	The roles of mercapto, benzene and methyl groups in the corrosion inhibition of imidazoles on copper: I. Experimental characterization. Corrosion Science, 2015, 98, 107-118.	3.0	90
67	Titanium nanostructures for biomedical applications. Nanotechnology, 2015, 26, 062002.	1.3	379
68	Corrosion protection of carbon steel by silica-based hybrid coatings containing cerium salts: Effect of silica nanoparticle content. Surface and Coatings Technology, 2015, 265, 106-116.	2.2	60
69	Hybrid sol–gel coating agents based on zirconium(IV) propoxide and epoxysilane. Journal of Sol-Gel Science and Technology, 2015, 74, 447-459.	1.1	40
70	Protection of copper against corrosion in simulated urban rain by the combined action of benzotriazole, 2-mercaptobenzimidazole and stearic acid. Corrosion Science, 2015, 98, 180-191.	3.0	74
71	The roles of mercapto, benzene, and methyl groups in the corrosion inhibition of imidazoles on copper: II. Inhibitor–copper bonding. Corrosion Science, 2015, 98, 457-470.	3.0	109
72	Electrochemical and Salt Spray Testing of Hybrid Coatings Based on Si and Zr Deposited on Aluminum and Its Alloys. Journal of the Electrochemical Society, 2015, 162, C592-C600.	1.3	25

#	Article	IF	CITATIONS
73	Ionic and Electronic Conductivity of the Anodic Films on Nickel. Journal of the Electrochemical Society, 2015, 162, C767-C774.	1.3	9
74	Corrosion Properties of UV Cured Hybrid Sol-Gel Coatings on AA7075-T6 Determined under Simulated Aircraft Conditions. Journal of the Electrochemical Society, 2014, 161, C412-C420.	1.3	25
75	Metals for joint replacement. , 2014, , 81-151.		5
76	A hybrid organic–inorganic sol–gel coating for protecting aluminium alloy 7075-T6 against corrosion in Harrison's solution. Journal of Sol-Gel Science and Technology, 2014, 70, 90-103.	1.1	60
77	Study of a sol–gel process in the preparation of hybrid coatings for corrosion protection using FTIR and 1H NMR methods. Journal of Non-Crystalline Solids, 2014, 396-397, 25-35.	1.5	35
78	Quaternary Ti–20Nb–10Zr–5Ta alloy during immersion in simulated physiological solutions: formation of layers, dissolution and biocompatibility. Journal of Materials Science: Materials in Medicine, 2014, 25, 1099-1114.	1.7	13
79	Metal-on-metal vs. metal-on-polyethylene total hip arthroplasty tribological evaluation of retrieved components and periprosthetic tissue. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 34, 243-252.	1.5	35
80	Structural Analysis, Electrochemical Behavior, and Biocompatibility of Novel Quaternary Titanium Alloy with near 1² Structure. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 3130-3143.	1.1	7
81	A Comparative Study of Four Bearing Couples of the Same Acetabular and Femoral Component: A Mean Follow-Up of 11.5 Years. Journal of Arthroplasty, 2014, 29, 176-180.	1.5	13
82	Effect of anodic oxidation on the corrosion behavior of Ti-based materials in simulated physiological solution. Journal of Applied Electrochemistry, 2013, 43, 645-658.	1.5	23
83	Hyaluronic acid stimulates the formation of calcium phosphate on CoCrMo alloy in simulated physiological solution. Journal of Materials Science: Materials in Medicine, 2013, 24, 555-571.	1.7	17
84	Electrochemical properties, chemical composition and thickness of passive film formed on novel Ti–20Nb–10Zr–5Ta alloy. Electrochimica Acta, 2013, 99, 176-189.	2.6	101
85	Wear debris from hip prostheses characterized by electron imaging. Open Medicine (Poland), 2013, 8, 476-484.	0.6	6
86	Amino acids as corrosion inhibitors for copper in acidic medium: Experimental and theoretical study. Journal of the Serbian Chemical Society, 2013, 78, 2069-2086.	0.4	25
87	Wear and corrosion in the loosening of total joint replacements (TJRs). , 2013, , 74-110.		3
88	Comparison of Ten-Year Survivorship of Hip Prostheses with Use of Conventional Polyethylene, Metal-on-Metal, or Ceramic-on-Ceramic Bearings. Journal of Bone and Joint Surgery - Series A, 2012, 94, 1756-1763.	1.4	79
89	Surface Analysis and Electrochemical Behavior of Aluminum Pretreated by Vinyltriethoxysilane Films in Mild NaCl Solution. Journal of the Electrochemical Society, 2012, 159, C303-C311.	1.3	36
90	The effect of biomolecules on the behaviour of CoCrMo alloy in various simulated physiological solutions. Electrochimica Acta, 2012, 78, 259-273.	2.6	37

INGRID MILOÅiev

#	Article	IF	CITATIONS
91	Influence of preparation methods on the properties of self-assembled films of octadecylphosphonate on Nitinol: XPS and EIS studies. Materials Science and Engineering C, 2012, 32, 2604-2616.	3.8	22
92	CoCrMo Alloy for Biomedical Applications. Modern Aspects of Electrochemistry, 2012, , 1-72.	0.2	25
93	Kinetics of passivity of NiTi in an acidic solution and the spectroscopic characterization of passive films. Journal of Solid State Electrochemistry, 2012, 16, 2503-2513.	1.2	17
94	The corrosion resistance of Nitinol alloy in simulated physiological solutions Part 2: The effect of surface treatment. Materials Science and Engineering C, 2012, 32, 1068-1077.	3.8	23
95	The corrosion resistance of Nitinol alloy in simulated physiological solutions. Materials Science and Engineering C, 2012, 32, 1087-1096.	3.8	57
96	Corrosion study of copper in the presence of benzotriazole and its hydroxy derivative. Materials and Corrosion - Werkstoffe Und Korrosion, 2011, 62, 956-966.	0.8	49
97	Triazole, Benzotriazole, and Naphthotriazole as Copper Corrosion Inhibitors: I. Molecular Electronic and Adsorption Properties. ChemPhysChem, 2011, 12, 3547-3555.	1.0	53
98	The formation of hydrophobic and corrosion resistant surfaces on copper and bronze by treatment in myristic acid. Journal of Applied Electrochemistry, 2010, 40, 1317-1323.	1.5	33
99	The comparison of organic protective layers on bronze and copper. Progress in Organic Coatings, 2010, 69, 199-206.	1.9	32
100	Metallic materials for biomedical applications: Laboratory and clinical studies. Pure and Applied Chemistry, 2010, 83, 309-324.	0.9	34
101	What Determines the Inhibition Effectiveness of ATA, BTAH, and BTAOH Corrosion Inhibitors on Copper?. Journal of the American Chemical Society, 2010, 132, 16657-16668.	6.6	278
102	Corrosion protection of aluminium pretreated by vinyltriethoxysilane in sodium chloride solution. Corrosion Science, 2010, 52, 1060-1069.	3.0	62
103	Corrosion behaviour of stainless steels in aqueous solutions of methanesulfonic acid. Corrosion Science, 2010, 52, 2430-2438.	3.0	77
104	Inhibition of copper corrosion by 1,2,3-benzotriazole: A review. Corrosion Science, 2010, 52, 2737-2749.	3.0	539
105	Electrochemical and XPS study of polyethyleneimines of different molecular sizes as corrosion inhibitors for AISI 430 stainless steel in near-neutral chloride media. Materials Chemistry and Physics, 2009, 116, 198-206.	2.0	116
106	<i>In vivo</i> production of nanosized metal wear debris formed by tribochemical reaction as confirmed by highâ€resolution TEM and XPS analyses. Journal of Biomedical Materials Research - Part A, 2009, 91A, 1100-1110.	2.1	53
107	Density functional study of the corrosion inhibition properties of 1,2,4-triazole and its amino derivatives. Chemical Physics Letters, 2009, 483, 198-203.	1.2	167
108	Polyethyleneimine as a corrosion inhibitor for ASTM 420 stainless steel in near-neutral saline media. Corrosion Science, 2009, 51, 525-533.	3.0	116

#	Article	IF	CITATIONS
109	Special modes of corrosion under physiological and simulated physiological conditions. Acta Biomaterialia, 2008, 4, 468-476.	4.1	267
110	XPS and EIS study of the passive film formed on orthopaedic Ti–6Al–7Nb alloy in Hank's physiological solution. Electrochimica Acta, 2008, 53, 3547-3558.	2.6	210
111	A comparative electrochemical and quantum chemical calculation study of BTAH and BTAOH as copper corrosion inhibitors in near neutral chloride solution. Electrochimica Acta, 2008, 53, 8287-8297.	2.6	197
112	Impedance and XPS study of benzotriazole films formed on copper, copper–zinc alloys and zinc in chloride solution. Corrosion Science, 2008, 50, 1987-1997.	3.0	183
113	Metals for joint replacement. , 2008, , 115-162.		7
114	The effect of various halide ions on the passivity of Cu, Zn and Cu–xZn alloys in borate buffer. Corrosion Science, 2007, 49, 637-653.	3.0	21
115	Benzotriazole as an inhibitor of brass corrosion in chloride solution. Applied Surface Science, 2007, 253, 8863-8873.	3.1	176
116	Metal ion release and surface composition of the Cu–18Ni–20Zn nickel–silver during 30 days immersion in artificial sweat. Applied Surface Science, 2007, 254, 644-652.	3.1	32
117	Study of Cu–18Ni–20Zn Nickel Silver and other Cu-based alloys in artificial sweat and physiological solution. Electrochimica Acta, 2007, 52, 6799-6810.	2.6	25
118	Comparison of a ternary Cu–18Ni–20Zn alloy and binary Cu-based alloys in alkaline solutions. Materials Chemistry and Physics, 2007, 104, 44-49.	2.0	7
119	The effect of Cu-rich sub-layer on the increased corrosion resistance of Cu–xZn alloys in chloride containing borate buffer. Electrochimica Acta, 2006, 52, 415-426.	2.6	39
120	An impedance study of two types of stainless steel in Ringer physiological solution containing complexing agents. Journal of Materials Science: Materials in Medicine, 2006, 17, 911-918.	1.7	14
121	Survivorship and Retrieval Analysis of Sikomet Metal-on-Metal Total Hip Replacements at a Mean of Seven Years. Journal of Bone and Joint Surgery - Series A, 2006, 88, 1173-1182.	1.4	155
122	SURVIVORSHIP AND RETRIEVAL ANALYSIS OF SIKOMET METAL-ON-METAL TOTAL HIP REPLACEMENTS AT A MEAN OF SEVEN YEARS. Journal of Bone and Joint Surgery - Series A, 2006, 88, 1173-1182.	1.4	32
123	Serum levels of cobalt and chromium in patients with Sikomet metal–metal total hip replacements. Journal of Orthopaedic Research, 2005, 23, 526-535.	1.2	75
124	Dissociation of the metal inlay from the polyethylene liner in an uncemented threaded cup. Archives of Orthopaedic and Trauma Surgery, 2005, 125, 134-141.	1.3	13
125	Passivity and Corrosion of Cu–xZn (xÂ=Â10–40Âwt%) Alloys in Borate Buffer Containing Chloride Ions. Journal of Applied Electrochemistry, 2005, 35, 975-984.	1.5	24
126	Poor results from the isoelastic total hip replacement. Monthly Notices of the Royal Astronomical Society: Letters, 2005, 76, 169-176.	1.2	45

#	Article	IF	CITATIONS
127	Electrochemical Study of Co-Based Alloys in Simulated Physiological Solution. Journal of Applied Electrochemistry, 2004, 34, 517-524.	1.5	41
128	The influence of complexing agent and proteins on the corrosion of stainless steels and their metal components. Journal of Materials Science: Materials in Medicine, 2003, 14, 69-77.	1.7	100
129	The composition of the surface passive film formed on CoCrMo alloy in simulated physiological solution. Electrochimica Acta, 2003, 48, 2767-2774.	2.6	225
130	Determination of trace cobalt concentrations in human serum by adsorptive stripping voltammetry. Journal of Trace Elements in Medicine and Biology, 2003, 17, 153-158.	1.5	25
131	Corrosion of Cu-xZn alloys in slightly alkaline chloride solutions studied by stripping voltammetry and microanalysis. Annali Di Chimica, 2001, 91, 343-54.	0.6	4
132	The behavior of stainless steels in physiological solution containing complexing agent studied by X-ray photoelectron spectroscopy. Journal of Biomedical Materials Research Part B, 2000, 52, 404-412.	3.0	99
133	Passive film on orthopaedic TiAlV alloy formed in physiological solution investigated by X-ray photoelectron spectroscopy. Biomaterials, 2000, 21, 2103-2113.	5.7	311
134	Effect of chloride concentration range on the corrosion resistance of Cu–xNi alloys. Journal of Applied Electrochemistry, 1999, 29, 393-402.	1.5	20
135	Comparison of TiN, ZrN and CrN hard nitride coatings: Electrochemical and thermal oxidation. Thin Solid Films, 1997, 303, 246-254.	0.8	293
136	The behaviour of Cu-xNi (x = 10 to 40 wt%) alloys in alkaline solutions containing chloride ions. Electrochimica Acta, 1997, 42, 1537-1548.	2.6	111
137	An electrochemical study of the passive film formed on Ni–Cr (80/20) coating. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1994, 98, 1243-1249.	0.9	11
138	Breakdown of Passive Film on Copper in Bicarbonate Solutions Containing Sulfate Ions. Journal of the Electrochemical Society, 1992, 139, 2409-2418.	1.3	49
139	Electrochemical methods in the study of localized corrosion attack. Journal of Applied Electrochemistry, 1992, 22, 448-455.	1.5	54
140	Passive Films on 90Cuâ€10Ni Alloy: The Mechanism of Breakdown in Chloride Containing Solutions. Journal of the Electrochemical Society, 1991, 138, 61-67.	1.3	39
141	Cerium chloride and acetate salts as corrosion inhibitors for aluminium alloy AA7075-T6 in sodium chloride solution. Corrosion, 0, , .	0.5	7