List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/604805/publications.pdf Version: 2024-02-01

		24978	34900
265	12,314	57	98
papers	citations	h-index	g-index
272	272	272	6847
all docs	docs citations	times ranked	citing authors

R-IIEE

#	Article	IF	CITATIONS
1	Second nearest-neighbor modified embedded-atom-method potential. Physical Review B, 2000, 62, 8564-8567.	1.1	533
2	Second nearest-neighbor modified embedded atom method potentials for bcc transition metals. Physical Review B, 2001, 64, .	1.1	519
3	Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study. Npj Computational Materials, 2018, 4, .	3.5	501
4	Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method. Physical Review B, 2003, 68, .	1.1	446
5	Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy. Nature Communications, 2017, 8, 15719.	5.8	278
6	Prediction of interface reaction products between Cu and various solder alloys by thermodynamic calculation. Acta Materialia, 1997, 45, 1867-1874.	3.8	242
7	On the stability of Cr carbides. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 1992, 16, 121-149.	0.7	220
8	Novel Co-rich high performance twinning-induced plasticity (TWIP) and transformation-induced plasticity (TRIP) high-entropy alloys. Scripta Materialia, 2019, 165, 39-43.	2.6	200
9	Effects of Mn and Al contents on cryogenic-temperature tensile and Charpy impact properties in four austenitic high-Mn steels. Acta Materialia, 2015, 100, 39-52.	3.8	194
10	Thermal stability of unsupported gold nanoparticle: a molecular dynamics study. Surface Science, 2002, 512, 262-268.	0.8	175
11	Modified embedded-atom method interatomic potentials for Ti and Zr. Physical Review B, 2006, 74, .	1.1	174
12	Exceptional phase-transformation strengthening of ferrous medium-entropy alloys at cryogenic temperatures. Acta Materialia, 2018, 161, 388-399.	3.8	174
13	A modified embedded-atom method interatomic potential for the Fe–C system. Acta Materialia, 2006, 54, 701-711.	3.8	159
14	Thermodynamic assessments of the Sn-In and Sn-Bi binary systems. Journal of Electronic Materials, 1996, 25, 983-991.	1.0	146
15	The modified embedded-atom method interatomic potentials and recent progress in atomistic simulations. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2010, 34, 510-522.	0.7	140
16	Novel Co-rich high entropy alloys with superior tensile properties. Materials Research Letters, 2019, 7, 82-88.	4.1	139
17	Revision of thermodynamic descriptions of the Fe-Cr & Fe-Ni liquid phases. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 1993, 17, 251-268.	0.7	135
18	Novel ultra-high-strength (ferrite + austenite) duplex lightweight steels achieved by fine dislocation substructures (Taylor lattices), grain refinement, and partial recrystallization. Acta Materialia, 2015, 96, 301-310.	3.8	135

#	Article	IF	CITATIONS
19	Development of strong and ductile metastable face-centered cubic single-phase high-entropy alloys. Acta Materialia, 2019, 181, 318-330.	3.8	134
20	Modified embedded-atom method interatomic potentials for the Ti–C and Ti–N binary systems. Acta Materialia, 2008, 56, 3481-3489.	3.8	127
21	A thermodynamic study on the Agî—,Sbî—,Sn system. Journal of Alloys and Compounds, 1996, 238, 155-166.	2.8	124
22	Thermodynamic calculation on the stability of (Fe,Mn)3AlC carbide in high aluminum steels. Journal of Alloys and Compounds, 2010, 505, 217-223.	2.8	120
23	Thermodynamics-aided alloy design and evaluation of Pb-free solder, SnBiInZn system. Acta Materialia, 1997, 45, 951-960.	3.8	117
24	Role of yttrium in activation of ã€^ c + a 〉 slip in magnesium: An atomistic approach. Scripta Materialia, 2015, 108, 104-108.	2.6	116
25	Effect of annealing temperature on microstructural modification and tensile properties in 0.35 C–3.5 Mn–5.8 Al lightweight steel. Acta Materialia, 2013, 61, 5050-5066.	3.8	113
26	Atomistic Modeling of pure Mg and Mg–Al systems. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2009, 33, 650-657.	0.7	112
27	Thermodynamic Evaluation for the Y2O3-BaO-CuOx System. Journal of the American Ceramic Society, 1991, 74, 78-84.	1.9	103
28	Origin of the plasticity in bulk amorphous alloys. Journal of Materials Research, 2007, 22, 3087-3097.	1.2	98
29	Thermodynamic assessment of the Fe-Nb-Ti-C-N system. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 2423-2439.	1.1	97
30	The origin of (001) texture evolution in FePt thin films on amorphous substrates. Journal of Applied Physics, 2006, 99, 053906.	1.1	95
31	Modified embedded-atom method interatomic potentials for the Fe–Ti–C and Fe–Ti–N ternary systems. Acta Materialia, 2009, 57, 3140-3147.	3.8	93
32	Deformation-induced nanocrystallization and its influence on work hardening in a bulk amorphous matrix composite. Acta Materialia, 2004, 52, 1525-1533.	3.8	90
33	Molecular dynamics simulation study of the effect of grain size on the deformation behavior of nanocrystalline body-centered cubic iron. Scripta Materialia, 2011, 64, 494-497.	2.6	90
34	Effect of μ-precipitates on the microstructure and mechanical properties of non-equiatomic CoCrFeNiMo medium-entropy alloys. Journal of Alloys and Compounds, 2019, 781, 75-83.	2.8	90
35	Thermodynamic prediction of interface phases at Cu/solder joints. Journal of Electronic Materials, 1998, 27, 1161-1166.	1.0	89
36	Thermodynamic assessments of the Sn-Zn and In-Zn binary systems. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 1996, 20, 471-480.	0.7	88

#	Article	IF	CITATIONS
37	Theory for plasticity of face-centered cubic metals. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6560-6565.	3.3	87
38	A modified embedded atom method interatomic potential for silicon. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2007, 31, 95-104.	0.7	85
39	The phase stability of equiatomic CoCrFeMnNi high-entropy alloy: Comparison between experiment and calculation results. Journal of Alloys and Compounds, 2017, 719, 189-193.	2.8	83
40	A new strategy for designing immiscible medium-entropy alloys with excellent tensile properties. Acta Materialia, 2020, 193, 71-82.	3.8	80
41	Thermal destabilization of binary and complex metal hydrides by chemical reaction: A thermodynamic analysis. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2006, 30, 65-69.	0.7	77
42	Improvement of interfacial bonding strength in roll-bonded Mg/Al clad sheets through annealing and secondary rolling process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 628, 1-10.	2.6	76
43	Ultrastrong duplex high-entropy alloy with 2†GPa cryogenic strength enabled by an accelerated martensitic transformation. Scripta Materialia, 2019, 171, 67-72.	2.6	76
44	A modified embedded-atom method interatomic potential for the Fe–H system. Acta Materialia, 2007, 55, 6779-6788.	3.8	75
45	A modified embedded atom method interatomic potential for carbon. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2005, 29, 7-16.	0.7	74
46	Modified embedded-atom method interatomic potentials for Mg–X (X=Y, Sn, Ca) binary systems. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2015, 48, 27-34.	0.7	73
47	Effects of carbide precipitation on the strength and Charpy impact properties of low carbon Mn–Ni–Mo bainitic steels. Journal of Nuclear Materials, 2001, 297, 138-148.	1.3	72
48	A modified embedded-atom method interatomic potential for the Fe–N system: A comparative study with the Fe–C system. Acta Materialia, 2006, 54, 4597-4607.	3.8	72
49	FCC to BCC transformation-induced plasticity based on thermodynamic phase stability in novel V10Cr10Fe45CoxNi35â^'x medium-entropy alloys. Scientific Reports, 2019, 9, 2948.	1.6	71
50	Modified embedded-atom method interatomic potentials for the Co-Cr, Co-Fe, Co-Mn, Cr-Mn and Mn-Ni binary systems. Computational Materials Science, 2017, 130, 121-129.	1.4	70
51	Thermodynamic calculation of LiH↔Li3AlH6↔LiAlH4 reactions. Journal of Alloys and Compounds, 2006, 420, 286-290.	2.8	69
52	Modified embedded-atom method interatomic potentials for pure Mn and the Fe–Mn system. Acta Materialia, 2009, 57, 474-482.	3.8	67
53	Utilization of brittle σ phase for strengthening and strain hardening in ductile VCrFeNi high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 743, 665-674.	2.6	67
54	A Thermodynamic Evaluation of the Cr-Mn and Fe-Cr-Mn Systems. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1993, 24, 1919-1933.	1.4	65

#	Article	IF	CITATIONS
55	Modified embedded-atom interatomic potential for Fe-Ni, Cr-Ni and Fe-Cr-Ni systems. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2017, 57, 98-106.	0.7	65
56	Effects of Mn Addition on Tensile and Charpy Impact Properties in Austenitic Fe-Mn-C-Al-Based Steels for Cryogenic Applications. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 5419-5430.	1.1	59
57	Design of new face-centered cubic high entropy alloys by thermodynamic calculation. Metals and Materials International, 2017, 23, 839-847.	1.8	59
58	Precipitation-driven metastability engineering of carbon-doped CoCrFeNiMo medium-entropy alloys at cryogenic temperature. Scripta Materialia, 2020, 188, 140-145.	2.6	59
59	Dislocation binding as an origin for the improvement of room temperature ductility in Mg alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 715, 266-275.	2.6	57
60	Cryogenic-temperature fracture toughness analysis of non-equi-atomic V10Cr10Fe45Co20Ni15 high-entropy alloy. Journal of Alloys and Compounds, 2019, 809, 151864.	2.8	57
61	Calculation of Phase Diagrams for the YO1.5-BaO-CuOx System. Journal of the American Ceramic Society, 1989, 72, 314-319.	1.9	56
62	Phase-field modeling for 3D grain growth based on a grain boundary energy database. Modelling and Simulation in Materials Science and Engineering, 2014, 22, 034004.	0.8	56
63	Modified embedded-atom method interatomic potential for theFeâ^'Cualloy system and cascade simulations on pure Fe andFeâ^'Cualloys. Physical Review B, 2005, 71, .	1.1	55
64	Intergranular segregation of Cr in Ti-stabilized low-Cr ferritic stainless steel. Scripta Materialia, 2009, 61, 1133-1136.	2.6	55
65	An identification scheme of grain boundaries and construction of a grain boundary energy database. Scripta Materialia, 2011, 64, 1152-1155.	2.6	55
66	Deformation-induced phase transformation of Co20Cr26Fe20Mn20Ni14 high-entropy alloy during high-pressure torsion at 77 K. Materials Letters, 2017, 202, 86-88.	1.3	55
67	An intermediate temperature creep model for Ni-based superalloys. International Journal of Plasticity, 2016, 79, 153-175.	4.1	54
68	Applications of computational thermodynamics — the extension from phase equilibrium to phase transformations and other properties. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2007, 31, 53-74.	0.7	53
69	Molecular dynamics simulation of the crystallization of a liquid gold nanoparticle. Journal of Crystal Growth, 2003, 250, 558-564.	0.7	52
70	Effects of Zn on ã€^c + a〉 slip and grain boundary segregation of Mg alloys. Scripta Materialia, 2019, 1 39-43.	60, _{2.6}	52
71	Deformation behavior of a Co-Cr-Fe-Ni-Mo medium-entropy alloy at extremely low temperatures. Materials Today, 2021, 50, 55-68.	8.3	51
72	Prediction of composition dependency of glass forming ability of Mg–Cu–Y alloys by thermodynamic approach. Scripta Materialia, 2005, 52, 969-972.	2.6	50

#	Article	IF	CITATIONS
73	Effects of aluminum content on cracking phenomenon occurring during cold rolling of three ferrite-based lightweight steel. Acta Materialia, 2013, 61, 5626-5635.	3.8	50
74	Modified embedded-atom method interatomic potentials for the Fe–Nb and Fe–Ti binary systems. Scripta Materialia, 2008, 59, 595-598.	2.6	49
75	Atomistic modeling of the Ti–Al binary system. Computational Materials Science, 2016, 119, 1-8.	1.4	49
76	Role of brittle sigma phase in cryogenic-temperature-strength improvement of non-equi-atomic Fe-rich VCrMnFeCoNi high entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 724, 403-410.	2.6	49
77	A thermodynamic evaluation of the Fe-Cr-V-C system. Journal of Phase Equilibria and Diffusion, 1992, 13, 349-364.	0.3	48
78	Effects of Annealing Temperature on Microstructure and Tensile Properties in Ferritic Lightweight Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 843-853.	1.1	47
79	Effects of deformation–induced BCC martensitic transformation and twinning on impact toughness and dynamic tensile response in metastable VCrFeCoNi high–entropy alloy. Journal of Alloys and Compounds, 2019, 785, 1056-1067.	2.8	46
80	Plastic Deformation Behavior of 40Fe–25Ni–15Cr–10Co–10V High-Entropy Alloy for Cryogenic Applications. Metals and Materials International, 2019, 25, 277-284.	1.8	46
81	A modified embedded-atom method interatomic potential for the Cu–Zr system. Journal of Materials Research, 2008, 23, 1095-1104.	1.2	45
82	Atomistic modeling of pure Li and Mg–Li system. Modelling and Simulation in Materials Science and Engineering, 2012, 20, 035005.	0.8	45
83	Microstructure and Mechanical Properties of High-Entropy Alloy Co20Cr26Fe20Mn20Ni14 Processed by High-Pressure Torsion at 77 K and 300 K. Scientific Reports, 2018, 8, 11074.	1.6	45
84	Atomistic modeling of pure Co and Co–Al system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2012, 38, 7-16.	0.7	44
85	Grain boundary engineering approach to improve hydrogen embrittlement resistance in Fe Mn C TWIP steel. International Journal of Hydrogen Energy, 2018, 43, 10129-10140.	3.8	44
86	Stress induced crystallization of amorphous materials and mechanical properties of nanocrystalline materials: a molecular dynamics simulation study. Acta Materialia, 2003, 51, 6233-6240.	3.8	42
87	Effect of Austenite Stability on Microstructural Evolution and Tensile Properties in Intercritically Annealed Medium-Mn Lightweight Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 2674-2685.	1.1	41
88	Origin of radiation resistance in multi-principal element alloys. Scientific Reports, 2018, 8, 16015.	1.6	41
89	Effects of transformation-induced plasticity (TRIP) on tensile property improvement of Fe45Co30Cr10V10Ni5-xMnx high-entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138809.	2.6	41
90	Computation of grain boundary energies. Modelling and Simulation in Materials Science and Engineering, 2004, 12, 621-632.	0.8	40

#	Article	IF	CITATIONS
91	A semi-empirical atomic potential for the Fe-Cr binary system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2001, 25, 527-534.	0.7	38
92	Size dependency of melting point of crystalline nano particles and nano wires: A thermodynamic modeling. Metals and Materials International, 2009, 15, 531-537.	1.8	37
93	Effects of annealing temperature on microstructures and tensile properties of a single FCC phase CoCuMnNi high-entropy alloy. Journal of Alloys and Compounds, 2020, 812, 152111.	2.8	37
94	Modified embedded-atom method interatomic potential for the Fe–Pt alloy system. Journal of Materials Research, 2006, 21, 199-208.	1.2	36
95	Effects of intergranular carbide precipitation on delayed fracture behavior in three TWinning Induced Plasticity (TWIP) steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 587, 85-99.	2.6	36
96	A Comparative Study on Hydrogen Diffusion in Amorphous and Crystalline Metals Using a Molecular Dynamics Simulation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 2906-2915.	1.1	36
97	Effect of microstructure on the cleavage fracture strength of low carbon Mn–Ni–Mo bainitic steels. Journal of Nuclear Materials, 2004, 324, 33-40.	1.3	35
98	Thermodynamic Calculations on the Stability of Cu2S in Low Carbon Steels. ISIJ International, 2007, 47, 163-171.	0.6	35
99	Effect of a high angle grain boundary on deformation behavior of Al nanopillars. Scripta Materialia, 2015, 107, 5-9.	2.6	35
100	Dynamic tension–compression asymmetry of martensitic transformation in austenitic Fe–(0.4,) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf S
101	Behavior of amorphous materials under hydrostatic pressures: A molecular dynamics simulation study. Metals and Materials International, 2004, 10, 467-474.	1.8	33
102	Thermodynamic assessment of the NaH↔Na3AlH6↔NaAlH4 hydride system. Journal of Alloys and Compounds, 2006, 424, 370-375.	2.8	33
103	Shear localization and the plasticity of bulk amorphous alloys. Scripta Materialia, 2010, 63, 231-234.	2.6	33
104	Governing factors for the formation of 4H or 6H-SiC polytype during SiC crystal growth: An atomistic computational approach. Journal of Crystal Growth, 2014, 389, 120-133.	0.7	33
105	Experimental investigation and phase diagram of CoCrMnNi–Fe system bridging high-entropy alloys and high-alloyed steels. Journal of Alloys and Compounds, 2019, 785, 320-327.	2.8	32
106	Correlation between plasticity and other materials properties of Cu–Zr bulk metallic glasses: An atomistic simulation study. Acta Materialia, 2011, 59, 805-811.	3.8	31
107	Role of atomic-scale chemical heterogeneities in improving the plasticity of Cu-Zr-Ag bulk amorphous alloys. Acta Materialia, 2018, 157, 209-217.	3.8	31
108	Modified embedded-atom method interatomic potentials for Mg–Al–Ca and Mg–Al–Zn ternary systems. Journal of Magnesium and Alloys, 2021, 9, 317-335.	5.5	31

#	Article	IF	CITATIONS
109	Activation of non-basal <câ+âa> slip in multicomponent Mg alloys. Journal of Magnesium and Alloys, 2022, 10, 585-597.</câ+âa>	5.5	31
110	Thermodynamic approach for predicting the glass forming ability of amorphous alloys. Intermetallics, 2004, 12, 1103-1107.	1.8	30
111	Thermodynamic analysis of the effect of C, Mn and Al on microstructural evolution of lightweight steels. Scripta Materialia, 2013, 68, 339-342.	2.6	30
112	Modified embedded-atom method interatomic potentials for the Ni–Co binary and the Ni–Al–Co ternary systems. Modelling and Simulation in Materials Science and Engineering, 2015, 23, 055004.	0.8	30
113	Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pt-M (M = Al,) Tj ETQq1 Thermochemistry, 2017, 59, 131-141.	1 0.7843 0.7	14 rgBT /O 30
114	Investigation of the phase equilibria in the Sn-Bi-In alloy system. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30, 1503-1515.	1.1	29
115	Sputter erosion of Si(001) using a new silicon MEAM potential and different thermostats. Nuclear Instruments & Methods in Physics Research B, 2007, 255, 195-201.	0.6	29
116	Effect of stress on self-diffusion in bcc Fe: An atomistic simulation study. Scripta Materialia, 2010, 63, 39-42.	2.6	29
117	Microstructural analysis of cracking phenomenon occurring during cold rolling of (0.1~0.7)C-3Mn-5Al lightweight steels. Metals and Materials International, 2015, 21, 43-53.	1.8	29
118	A numerical model to predict mechanical properties of Ni-base disk superalloys. International Journal of Plasticity, 2018, 110, 123-144.	4.1	29
119	A thermodynamic description of the Co-Cr-Fe-Ni-V system for high-entropy alloy design. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2019, 66, 101624.	0.7	28
120	Effects of Cr addition on Charpy impact energy in austenitic 0.45C-24Mn-(0,3,6)Cr steels. Journal of Materials Science and Technology, 2020, 50, 21-30.	5.6	28
121	Atomistic modeling of the Cu–Zr–Ag bulk metallic glass system. Scripta Materialia, 2009, 61, 801-804.	2.6	27
122	Modified embedded-atom method interatomic potentials for the Nb-C, Nb-N, Fe-Nb-C, and Fe-Nb-N systems. Journal of Materials Research, 2010, 25, 1288-1297.	1.2	27
123	Development and application of Ni-Ti and Ni-Al-Ti 2NN-MEAM interatomic potentials for Ni-base superalloys. Computational Materials Science, 2017, 139, 225-233.	1.4	27
124	Influence of hydrogen on the grain boundary crack propagation in bcc iron: A molecular dynamics simulation. Computational Materials Science, 2018, 149, 424-434.	1.4	27
125	A Thermodynamic Modelling of the Stability of Sigma Phase in the Cr-Fe-Ni-V High-Entropy Alloy System. Journal of Phase Equilibria and Diffusion, 2018, 39, 694-701.	0.5	27
126	A thermodynamic study on the MnC and FeMn systems. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 1989, 13, 345-354.	0.7	26

#	Article	lF	CITATIONS
127	A modified embedded atom method interatomic potential for the Cu–Ni system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2004, 28, 125-132.	0.7	26
128	Order–disorder character of PbTiO ₃ . Journal of Physics Condensed Matter, 2008, 20, 015224.	0.7	26
129	Modified embedded-atom method interatomic potential for the Fe–Al system. Journal of Physics Condensed Matter, 2010, 22, 175702.	0.7	26
130	{100} texture evolution in bcc Fe sheets - Computational design and experiments. Acta Materialia, 2016, 106, 106-116.	3.8	26
131	Modified embedded-atom method interatomic potentials for pure Zn and Mg-Zn binary system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2018, 60, 200-207.	0.7	26
132	2.3 GPa cryogenic strength through thermal-induced and deformation-induced body-centered cubic martensite in a novel ferrous medium entropy alloy. Scripta Materialia, 2021, 204, 114157.	2.6	26
133	Strain hardening of an amorphous matrix composite due to deformation- induced nanocrystallization during quasistatic compression. Applied Physics Letters, 2004, 84, 2781-2783.	1.5	25
134	Origin of hydrogen embrittlement in vanadium-based hydrogen separation membranes. International Journal of Hydrogen Energy, 2012, 37, 13583-13593.	3.8	25
135	Origin of unrealistic blunting during atomistic fracture simulations based on MEAM potentials. Philosophical Magazine, 2014, 94, 1745-1753.	0.7	25
136	Enhanced high temperature hydrogen permeation characteristics of V–Ni alloy membranes containing a trace amount of yttrium. Scripta Materialia, 2016, 116, 122-126.	2.6	25
137	Formulation of the A2/B2/D03 atomic ordering energy and a thermodynamic analysis of the Fe-Si system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 1987, 11, 253-270.	0.7	24
138	Prediction of hydrogen permeability in V–Al and V–Ni alloys. Journal of Membrane Science, 2013, 430, 234-241.	4.1	24
139	Microstructural Developments and Tensile Properties of Lean Fe-Mn-Al-C Lightweight Steels. Jom, 2014, 66, 1857-1867.	0.9	24
140	Effect of 1Al addition on deformation behavior of Mg. Journal of Magnesium and Alloys, 2021, 9, 489-498.	5.5	24
141	A thermodynamic evaluation of the Fe-Cr-Mn-C system. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1993, 24, 1017-1025.	1.4	23
142	Effects of tungsten and molybdenum on high-temperature tensile properties of five heat-resistant austenitic stainless steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 656, 190-199.	2.6	23
143	Atomistic modeling of III–V nitrides: modified embedded-atom method interatomic potentials for GaN, InN and Ga _{1â^²<i>x</i>} In _{<i>x</i>} N. Journal of Physics Condensed Matter, 2009, 21, 325801.	0.7	22
144	Atmospheric pressure plasma treatment on graphene grown by chemical vapor deposition. Current Applied Physics, 2015, 15, 563-568.	1.1	22

#	Article	IF	CITATIONS
145	Effects of Mn and Mo addition on high-temperature tensile properties in high-Ni-containing austenitic cast steels used for turbo-charger application. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 682, 147-155.	2.6	22
146	Effect of alloying elements (Al, Co, Fe, Ni) on the solubility ofÂhydrogen in vanadium: A thermodynamic calculation. International Journal of Hydrogen Energy, 2012, 37, 7836-7847.	3.8	21
147	Effects of homogenization temperature on cracking during cold-rolling of Al0.5CoCrFeMnNi high-entropy alloy. Materials Chemistry and Physics, 2018, 210, 187-191.	2.0	21
148	Improvement of tensile properties in (austenite+ferrite+κ-carbide) triplex hot-rolled lightweight steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 730, 177-186.	2.6	21
149	Calculation of α∫γ equilibria in SA508 grade 3 steels for intercritical heat treatment. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 29, 1441-1447.	1.1	20
150	Three-dimensional Monte Carlo simulation for the effect of precipitates and sub-boundaries on abnormal grain growth. Scripta Materialia, 2012, 66, 398-401.	2.6	20
151	Effects of Annealing Treatment Prior to Cold Rolling on the Edge Cracking Phenomenon of Ferritic Lightweight Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 3844-3856.	1.1	20
152	Effects of deformation-induced martensitic transformation on cryogenic fracture toughness for metastable Si8V2Fe45Cr10Mn5Co30 high-entropy alloy. Acta Materialia, 2022, 225, 117568.	3.8	20
153	A thermodynamic study on the V-C and FE-V systems. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 1991, 15, 283-291.	0.7	19
154	Prediction of Ti/Al2O3 interface reaction products by diffusion simulation. Acta Materialia, 1997, 45, 3993-3999.	3.8	19
155	A modified embedded-atom method interatomic potential for indium. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2008, 32, 82-88.	0.7	19
156	Design of sustainable V-based hydrogen separation membranes based on grain boundary segregation. International Journal of Hydrogen Energy, 2014, 39, 12031-12044.	3.8	19
157	A modified embedded-atom method interatomic potential for ionic systems:2NNMEAM+Qeq. Physical Review B, 2016, 93, .	1.1	19
158	Texture evolution by grain growth under a system of anisotropic grain boundary energy. Scripta Materialia, 1997, 37, 1761-1767.	2.6	18
159	A modified embedded-atom method interatomic potential for Germanium. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2008, 32, 34-42.	0.7	18
160	Structural disordering of amorphous alloys: A molecular dynamics analysis. Scripta Materialia, 2009, 61, 911-914.	2.6	18
161	Tunable Catalytic Alloying Eliminates Stacking Faults in Compound Semiconductor Nanowires. Nano Letters, 2012, 12, 855-860.	4.5	18
162	Effects of Cr and B Contents on Volume Fraction of (Cr,Fe)2B and Hardness in Fe-Based Alloys Used for Powder Injection Molding. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 2237-2250.	1.1	18

#	Article	IF	CITATIONS
163	An approach for screening single phase high-entropy alloys using an in-house thermodynamic database. Intermetallics, 2018, 101, 56-63.	1.8	18
164	A thermodynamic study on the FeMnC system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 1989, 13, 355-365.	0.7	17
165	Modified embedded-atom method calculation for the Ni–W system. Journal of Materials Research, 2003, 18, 1863-1867.	1.2	17
166	An interatomic potential for the Li-Co-O ternary system. Computational Materials Science, 2018, 142, 47-58.	1.4	17
167	Comparison of the Advantages Conferred by Mobility and Energy of the Grain Boundary in Inducing Abnormal Grain Growth Using Monte Carlo Simulations. Materials Transactions, 2009, 50, 2521-2525.	0.4	16
168	Thermodynamic properties of phase-field models for grain boundary segregation. Acta Materialia, 2016, 112, 150-161.	3.8	16
169	Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pd-M (M = Al,) Ţ Thermochemistry, 2018, 62, 172-186.	j ETQq1 1 0.7	0.784314 rg 16
170	Effects of strain rate on room- and cryogenic-temperature compressive properties in metastable V10Cr10Fe45Co35 high-entropy alloy. Scientific Reports, 2019, 9, 6163.	1.6	16
171	Numerical simulation of diffusional reactions between multiphase alloys with different matrix phases. Scripta Materialia, 1999, 40, 573-579.	2.6	15
172	Flat-surface, step-edge, facet–facet, and facet–step diffusion barriers in growth of a Pb mesa. Surface Science, 2008, 602, 2284-2294.	0.8	15
173	Atomistic modeling of an impurity element and a metal–impurity system: pure P and Fe–P system. Journal of Physics Condensed Matter, 2012, 24, 225002.	0.7	15
174	Modified embedded-atom method interatomic potentials for pure Y and the V–Pd–Y ternary system. Modelling and Simulation in Materials Science and Engineering, 2013, 21, 085008.	0.8	15
175	Effect of Mn Addition on Microstructural Modification and Cracking Behavior of Ferritic Light-Weight Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 5469-5485.	1.1	15
176	Excellent combination of cryogenic-temperature strength and ductility of high-entropy-alloy-cored multi-layered sheet. Journal of Alloys and Compounds, 2019, 797, 465-470.	2.8	15
177	A thermodynamic study on the FE-V-C system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 1991, 15, 293-306.	0.7	14
178	Numerical procedure for simulation of multicomponent and multi-layered phase diffusion. Metals and Materials International, 1999, 5, 1-15.	0.2	14
179	Atomistic modeling of the Al–H and Ni–H systems. Journal of Materials Research, 2011, 26, 1552-1560.	1.2	14
180	Body-centered-cubic martensite and the role on room-temperature tensile properties in Si-added SiVCrMnFeCo high-entropy alloys. Journal of Materials Science and Technology, 2021, 76, 222-230.	5.6	14

#	Article	IF	CITATIONS
181	A thermodynamic description for the Co–Cr–Fe–Mn–Ni system. Journal of Materials Science, 2022, 57, 1373-1389.	1.7	14
182	A semi-empirical interatomic potential for the Cu–Ti binary system. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 449-451, 733-736.	2.6	13
183	Thermodynamic analysis for the size-dependence of nanowire composition grown by a vapor‑liquid‑'solid method. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2008, 32, 669-674.	0.7	13
184	Influence of Cu, Cr and C on the irradiation defect in Fe: A molecular dynamics simulation study. Journal of Nuclear Materials, 2008, 373, 28-38.	1.3	13
185	Manipulation of surface energy anisotropy in iron using surface segregation of phosphorus: An atomistic simulation. Scripta Materialia, 2013, 68, 329-332.	2.6	13
186	Interatomic Potential of Li–Mn–O and Molecular Dynamics Simulations on Li Diffusion in Spinel Li1–xMn2O4. Journal of Physical Chemistry C, 2017, 121, 13008-13017.	1.5	13
187	Influence of initial microstructures on intercritical annealing behaviour in a medium Mn steel. Materials Science and Technology, 2019, 35, 2092-2100.	0.8	13
188	Estimation of order–disorder transition temperature in Pt–Co alloy by Monte Carlo simulation using modified embedded atom method. Scripta Materialia, 2001, 45, 495-502.	2.6	12
189	Second-nearest-neighbor modified embedded-atom method interatomic potential for V-M (MÂ=ÂCu, Mo,) Tj ETQ	q1_10.78	34314 rgBT /(12
190	The Origin of Activation of Non-basal Slip in Mg-Ce Dilute Alloy: An Atomistic Simulation Study. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 964-974.	1.1	12
191	Computational design of V-CoCrFeMnNi high-entropy alloys: An atomistic simulation study. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2021, 74, 102317.	0.7	12
192	A comparative study on grain boundary segregation and solute clustering in Mg-Al-Zn and Mg-Zn-Ca alloys. Journal of Alloys and Compounds, 2022, 894, 162539.	2.8	12
193	Thermodynamic analysis of solid-state metal/Si interfacial reactions. Journal of Materials Research, 1999, 14, 1002-1017.	1.2	11
194	Analysis and Prevention of Dent Defects Formed during Strip Casting of Twin-Induced Plasticity Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 1087-1098.	1.1	11
195	Effect of Tempering Time on Microstructure, Tensile Properties, and Deformation Behavior of a Ferritic Light-Weight Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 235-247.	1.1	11
196	Intergranular embrittlement of iron by phosphorus segregation: an atomistic simulation. Modelling and Simulation in Materials Science and Engineering, 2013, 21, 025012.	0.8	11
197	Design of cost-effective Fe-based amorphous coating alloys having high amorphous forming ability by thermodynamic calculation. Metals and Materials International, 2014, 20, 577-583.	1.8	11
198	Effects of Cr and Nb addition on high-temperature tensile properties in austenitic cast steels used for turbo-charger application. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 677, 316-324.	2.6	11

#	Article	IF	CITATIONS
199	Modified embedded-atom method interatomic potentials for Mg-Nd and Mg-Pb binary systems. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2017, 57, 55-61.	0.7	11
200	Evolution of microstructure and tensile properties of cold-drawn hyper-eutectoid steel wires during post-deformation annealing. Journal of Materials Science and Technology, 2020, 41, 1-11.	5.6	11
201	Second nearest-neighbor modified embedded-atom method interatomic potentials for the Co-M (M = Ti,) Tj ETQq1 101791.	1 0.7843 0.7	14 rgBT /0 11
202	Interface characteristics and mechanical behavior of additively manufactured multi-material of stainless steel and Inconel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 847, 143318.	2.6	11
203	Thermal decomposition of Li3AlH6 with TiAl3 catalyst. Catalysis Today, 2007, 120, 292-297.	2.2	10
204	Effects of (Cr,Fe)2B borides on hardness in powder-injection-molded product fabricated with Fe-based alloy powders. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 556, 366-372.	2.6	10
205	Atomistic simulation of hydrogen diffusion at tilt grain boundaries in vanadium. Metals and Materials International, 2013, 19, 1221-1225.	1.8	10
206	Parallel three-dimensional Monte Carlo simulations for effects of precipitates and sub-boundaries on abnormal grain growth of Goss grains in Fe–3%Si steel. Philosophical Magazine, 2013, 93, 4198-4212.	0.7	10
207	Structural changes during lithiation and delithiation of Si anodes in Li-ion batteries: A large scale molecular dynamics study. Metals and Materials International, 2014, 20, 1003-1009.	1.8	10
208	Effects of Phosphorus and Carbon Contents on Amorphous Forming Ability in Fe-based Amorphous Alloys Used for Thermal Spray Coatings. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 2573-2580.	1.1	9
209	Critical assessment of Pt surface energy – An atomistic study. Surface Science, 2018, 670, 8-12.	0.8	9
210	Self-Assembly of Pulverized Nanoparticles: An Approach to Realize Large-Capacity, Long-Lasting, and Ultra-Fast-Chargeable Na-Ion Batteries. Nano Letters, 2021, 21, 9044-9051.	4.5	9
211	Evaluation of off-diagonal diffusion coefficient from phase diagram information. Journal of Phase Equilibria and Diffusion, 2001, 22, 241-246.	0.3	8
212	Kinetics of mesa overlayer growth: Climbing of adatoms onto the mesa top. Applied Physics Letters, 2008, 92, 021909.	1.5	8
213	A modified embedded-atom method interatomic potential for the V–H system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2011, 35, 302-307.	0.7	8
214	Effects of C and Si on strain aging of strain-based API X60 pipeline steels. Metals and Materials International, 2017, 23, 450-458.	1.8	8
215	Second nearest-neighbor modified embedded atom method interatomic potentials for the Na unary and Na-Sn binary systems. Computational Materials Science, 2020, 185, 109953.	1.4	8
216	Second-nearest-neighbor modified embedded-atom method interatomic potential for Cu-M (MÂ=ÂCo, Mo) binary systems. Computational Materials Science, 2020, 178, 109627.	1.4	8

#	Article	IF	CITATIONS
217	Formulation of the aL/L12 atomic ordering energy and a thermodynamic analysis of the Fe-Ni System. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 1988, 12, 393-403.	0.7	7
218	Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties. Scientific Reports, 2016, 6, 26333.	1.6	7
219	Computational screening of alloying elements for the development of sustainable V-based hydrogen separation membranes. Journal of Membrane Science, 2016, 497, 270-281.	4.1	7
220	3D simulations of grain growth in polycrystalline sheets and rods: Effects of free surface and shape of specimen. Scripta Materialia, 2016, 110, 113-116.	2.6	7
221	Carbide Formation and Matrix Strengthening by Nb Addition in Austenitic Stainless Cast Steels Used for Turbo-Charger-Housing Materials. Metals and Materials International, 2020, 26, 1506-1514.	1.8	7
222	Diffusion in A15 Nb3Sn: An atomistic study. Acta Materialia, 2022, 234, 118050.	3.8	7
223	Atomistic modeling for interfacial properties of Ni-Al-V ternary system. Metals and Materials International, 2014, 20, 423-429.	1.8	6
224	Modified embedded-atom interatomic potential for Co–W and Al–W systems. Transactions of Nonferrous Metals Society of China, 2015, 25, 907-914.	1.7	6
225	Data to reproduce and modify "An approach for screening single phase high-entropy alloys using an in-house thermodynamic database― Data in Brief, 2018, 20, 1337-1339.	0.5	6
226	A thermodynamic description of the Al–Cu–Fe–Mn system for an immiscible medium-entropy alloy design. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2020, 71, 101995.	0.7	6
227	Phase-field model with relaxation of the partition coefficient. Computational Materials Science, 2021, 188, 110184.	1.4	6
228	Predictive Analysis of Ti/AlN Interfacial Reaction Using Diffusion Simulation. Scripta Materialia, 1998, 38, 499-507.	2.6	5
229	Monte Carlo Simulation of Phase Separation Behavior in a Cu-Co Alloy Nanoparticle. Journal of Materials Research, 2002, 17, 925-928.	1.2	5
230	Replacement of Ni by Mn in High-Ni-Containing Austenitic Cast Steels used for Turbo-Charger Application. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 568-574.	1.1	5
231	Modified embedded-atom method interatomic potential for the Mg–Zn–Ca ternary system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2019, 67, 101674.	0.7	5
232	Interatomic potentials for Pt-C and Pd-C systems and a study of structure-adsorption relationship in large Pt/graphene system. Computational Materials Science, 2020, 185, 109946.	1.4	5
233	Effects of temperature and loading rate on phase stability and deformation mechanism in metastable V10Cr10Co30FexNi50-x high entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 804, 140766.	2.6	5
234	Excellent strength-ductility combination of multi-layered sheets composed of high-strength V10Cr10Fe50Co30 high entropy alloy and 304 austenitic stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 823, 141727.	2.6	5

#	Article	IF	CITATIONS
235	A Semi-Empirical Atomistic Approach in Materials Research. Journal of Phase Equilibria and Diffusion, 2009, 30, 509-516.	0.5	4
236	The effect of porosity on the elasticity of pure titanium: An atomistic simulation. Metals and Materials International, 2010, 16, 421-425.	1.8	4
237	Size dependence in self-bending mechanism of Ge/Si bilayer nanofilms. Journal of Applied Physics, 2011, 109, 074314.	1.1	4
238	Interpretation of high-temperature tensile properties by thermodynamically calculated equilibrium phase diagrams of heat-resistant austenitic cast steels. Metals and Materials International, 2017, 23, 43-53.	1.8	4
239	Second nearest-neighbor modified embedded-atom method interatomic potentials for the Mo-M (MÂ=ÂAl,) Tj ET	Qq1 ₄ 1 0.7	84314 rgBT /
240	Strength–ductility enhancement in multi-layered sheet with high-entropy alloy and high-Mn twinning-induced plasticity steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 822, 141670.	2.6	4
241	Effects of Temperature and Oxygen Partial Pressure on Nonstoichiometry of YBa2Cu3O6+delta. Journal of the American Ceramic Society, 1993, 76, 1609-1610.	1.9	3
242	Structural characterization and stress-relaxation behavior of superlattice Cu5Zr. Scripta Materialia, 2008, 58, 5-8.	2.6	3
243	A semi-empirical methodology to predict hydrogen permeability in amorphous alloy membranes. Journal of Membrane Science, 2014, 472, 102-109.	4.1	3
244	Isothermal Treatment Effects on Precipitates and Tensile Properties of an HSLA Steel. Metals and Materials International, 2018, 24, 525-531.	1.8	3
245	Effects of Cr Reduction on High-Temperature Strength of High-Ni Austenitic Cast Steels Used for High-Performance Turbo-chargers. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 4604-4614.	1.1	3
246	Effects of V or Cu Addition on High-Temperature Tensile Properties of High-Ni-Containing Austenitic Cast Steels Used for High-Performance Turbo-Charger Housings. Metals and Materials International, 2019, 25, 285-294.	1.8	3
247	Ultrafast Na Transport into Crystalline Sn via Dislocationâ€Pipe Diffusion. Small, 2022, 18, e2104944.	5.2	3
248	Second nearest-neighbor modified embedded atom method interatomic potentials for Na-Mâ^'Sn (MÂ=ÂCu,) Tj E	TQ _Q 0 0 0	rgǥT /Overlo
249	The formation of sub-10nm nanohole array on block copolymer thin films on gold surface using surface neutralization based on O2 plasma treatment and self-assembled monolayer. Surface Science, 2010, 604, 1034-1039.	0.8	2
250	Durability screening of Pt ternary alloy (111) surfaces for oxygen reduction reaction using Density Functional Theory. Surfaces and Interfaces, 2020, 18, 100440.	1.5	2
251	Pressure dependence of thermodynamic interaction parameters for binary solid solution phases: An atomistic simulation study. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2021, 75, 102342.	0.7	2
252	A second nearest-neighbor modified embedded-atom method combined with a charge equilibration interatomic potential for the Li–Ni–O ternary system and Li diffusion in lithium-ion battery cathode structure. Journal of Power Sources, 2022, 542, 231790.	4.0	2

#	Article	IF	CITATIONS
253	Effects of Crystallographic Structure and Cr on the Rate of Void Nucleation in BCC Fe: An Atomistic Simulation Study. Metals and Materials International, 2008, 14, 283-290.	1.8	1
254	A summary of the CALPHAD XXXIX conference. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2011, 35, C1-C21.	0.7	1
255	Replacement of Ni by Mn in Commercial High-Ni Austenitic Cast Steels Used for High-Performance Turbocharger Housings. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 2585-2593.	1.1	1
256	Effect of Plasma Ignition on the Growth Temperature Decrease of Single-Walled Carbon Nanotubes in a Plasma-Coupled Hybrid Chemical-Vapor-Deposition System. Journal of the Korean Physical Society, 2020, 76, 1110-1115.	0.3	1
257	Medium-range Orders in Amorphous Alloys and Their Role on the Plasticity: A Molecular Dynamics Viewpoint Study. Journal of Korean Institute of Metals and Materials, 2010, 48, 101-108.	0.4	1
258	Understanding the Plasticity of Amorphous Alloys Via the Interpretation of Structural Evolution Inside a Shear Band. Korean Journal of Materials Research, 2009, 19, 276-280.	0.1	1
259	Estimation of Relative Glass Forming Abilities of Multicomponent Alloy Systems. Materials Transactions, 2007, 48, 1671-1674.	0.4	0
260	Probing the hydrogen movement in Zr-Cu amorphous alloys using molecular dynamics simulations. , 2011, , .		0
261	Dislocation Behavior and Grain Boundary Segregation of Mg–Zn Alloys. Minerals, Metals and Materials Series, 2019, , 215-218.	0.3	0
262	Authors' Reply to Discussion of "Effects of Cr Reduction on High-Temperature Strength of High-Ni Austenitic Cast Steels Used for High-Performance Turbochargers― Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 1098-1100.	1.1	0
263	Ultrafast Na Transport into Crystalline Sn via Dislocation-Pipe Diffusion for Rapid Battery Charging. SSRN Electronic Journal, 0, , .	0.4	0
264	Role of A phase Separating Element on the Plasticity of Amorphous Alloys : Experiment and Atomic Simulation Study. Korean Journal of Materials Research, 2009, 19, 79-84.	0.1	0
265	Understanding on the Role of Rare Earth Elements in Activation of \$\$ leftlangle {ext{c}} + {ext{a}} ightangle \$\$ Slip in Magnesium: An Atomistic Approach. Minerals, Metals and Materials Series, 2017, , 491-495.	0.3	0