
Michael Telias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6048042/publications.pdf Version: 2024-02-01

MICHAEL TELIAS

#	Article	IF	CITATIONS
1	Retinoic acid inhibitors mitigate vision loss in a mouse model of retinal degeneration. Science Advances, 2022, 8, eabm4643.	10.3	13
2	Human pluripotent stem cells in the research of Fragile X Syndrome. , 2021, , 129-145.		0
3	Pharmacological Manipulation of Wnt/β-Catenin Signaling Pathway in Human Neural Precursor Cells Alters Their Differentiation Potential and Neuronal Yield. Frontiers in Molecular Neuroscience, 2021, 14, 680018.	2.9	4
4	Degeneration-Dependent Retinal Remodeling: Looking for the Molecular Trigger. Frontiers in Neuroscience, 2020, 14, 618019.	2.8	14
5	Local photoreceptor degeneration causes local pathophysiological remodeling of retinal neurons. JCI Insight, 2020, 5, .	5.0	24
6	Pharmacological Treatments for Fragile X Syndrome Based on Synaptic Dysfunction. Current Pharmaceutical Design, 2020, 25, 4394-4404.	1.9	5
7	Patch-Clamp Recordings from Human Embryonic Stem Cells-Derived Fragile X Neurons. Methods in Molecular Biology, 2019, 1942, 131-139.	0.9	0
8	Fragile X Syndrome Pre-Clinical Research: Comparing Mouse- and Human-Based Models. Methods in Molecular Biology, 2019, 1942, 155-162.	0.9	4
9	Molecular Mechanisms of Synaptic Dysregulation in Fragile X Syndrome and Autism Spectrum Disorders. Frontiers in Molecular Neuroscience, 2019, 12, 51.	2.9	58
10	Retinoic Acid Induces Hyperactivity, and Blocking Its Receptor Unmasks Light Responses and Augments Vision in Retinal Degeneration. Neuron, 2019, 102, 574-586.e5.	8.1	48
11	Immature Responses to GABA in Fragile X Neurons Derived from Human Embryonic Stem Cells. Frontiers in Cellular Neuroscience, 2016, 10, 121.	3.7	34
12	How Azobenzene Photoswitches Restore Visual Responses to the Blind Retina. Neuron, 2016, 92, 100-113.	8.1	56
13	Functional Deficiencies in Fragile X Neurons Derived from Human Embryonic Stem Cells. Journal of Neuroscience, 2015, 35, 15295-15306.	3.6	63
14	Molecular Mechanisms Regulating Impaired Neurogenesis of Fragile X Syndrome Human Embryonic Stem Cells. Stem Cells and Development, 2015, 24, 2353-2365.	2.1	35
15	Human embryonic stem cells carrying an unbalanced translocation demonstrate impaired differentiation into trophoblasts: an in vitro model of human implantation failure. Molecular Human Reproduction, 2015, 21, 271-280.	2.8	8
16	Neural stem cell replacement: a possible therapy for neurodevelopmental disorders?. Neural Regeneration Research, 2015, 10, 180.	3.0	11
17	Modeling Neurodevelopmental Disorders Using Human Pluripotent Stem Cells. Stem Cell Reviews and Reports, 2014, 10, 494-511.	5.6	36
18	Implantation failure of translocated embryos can be explained by impaired trophoblastic differentiation. Fertility and Sterility, 2014, 102, e235.	1.0	0

MICHAEL TELIAS

#	Article	IF	CITATIONS
19	Electrical maturation of neurons derived from human embryonic stem cells. F1000Research, 2014, 3, 196.	1.6	20
20	Electrical maturation of neurons derived from human embryonic stem cells. F1000Research, 2014, 3, 196.	1.6	15
21	Neural differentiation of fragile X human embryonic stem cells reveals abnormal patterns of development despite successful neurogenesis. Developmental Biology, 2013, 374, 32-45.	2.0	103
22	Human embryonic stem cells carrying mutations for severe genetic disorders. In Vitro Cellular and Developmental Biology - Animal, 2010, 46, 327-336.	1.5	27
23	Lysophospholipids modulate voltage-gated calcium channel currents in pituitary cells; effects of lipid stress. Cell Calcium, 2010, 47, 514-524.	2.4	20
24	Lysophospholipids Modulate Voltage-Gated Calcium Channel Currents in Pituitary Cells; Effects of Lipid-Stress. Biophysical Journal, 2010, 98, 15a.	0.5	3
25	O11 Human embryonic stem cells harboring an unbalanced reciprocal translocation t(11;22) as a valuable model for studying single gene dosage effects. Reproductive BioMedicine Online, 2010, 20, S18.	2.4	0
26	Editorial: Pathological hyperactivity and hyperexcitability in the central nervous system. Frontiers in Molecular Neuroscience, 0, 15, .	2.9	1