Felipe Kremer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/604796/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent. Nature, 2022, 601, 573-578.	27.8	137
2	Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells. Science, 2021, 371, 390-395.	12.6	270
3	Lead-free (Ag,K)NbO ₃ materials for high-performance explosive energy conversion. Science Advances, 2020, 6, eaba0367.	10.3	38
4	On the origin of dislocation generation and annihilation in <i>α</i> -Ga2O3 epilayers on sapphire. Applied Physics Letters, 2019, 115, .	3.3	37
5	Impurity-enhanced solid-state amorphization: the Ni–Si thin film reaction altered by nitrogen. Journal Physics D: Applied Physics, 2019, 52, 145301.	2.8	8
6	Introduction of TiO ₂ in Cul for Its Improved Performance as a p-Type Transparent Conductor. ACS Applied Materials & Interfaces, 2019, 11, 24254-24263.	8.0	33
7	Electrospun Manganese-Based Perovskites as Efficient Oxygen Exchange Redox Materials for Improved Solar Thermochemical CO ₂ Splitting. ACS Applied Energy Materials, 2019, 2, 2494-2505.	5.1	43
8	Hydrogenation of Phosphorus-Doped Polycrystalline Silicon Films for Passivating Contact Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 5554-5560.	8.0	47
9	Highly Efficient Visible Light Catalysts Driven by Ti ³⁺ â€V _O â€2Ti ⁴⁺ â€N ^{3â^'} Defect Clusters. ChemNanoMat, 5, 169-174.	20 1.9 ,	3
10	Nanoscale density variations induced by high energy heavy ions in amorphous silicon nitride and silicon dioxide. Nanotechnology, 2018, 29, 144004.	2.6	26
11	Above-Band Gap Photoinduced Stabilization of Engineered Ferroelectric Domains. ACS Applied Materials & Interfaces, 2018, 10, 12781-12789.	8.0	26
12	Uranium(III)-carbon multiple bonding supported by arene δ-bonding in mixed-valence hexauranium nanometre-scale rings. Nature Communications, 2018, 9, 2097.	12.8	43
13	Photovoltaic Effect of a Ferroelectric-Luminescent Heterostructure under Infrared Light Illumination. ACS Applied Materials & Interfaces, 2018, 10, 29786-29794.	8.0	8
14	Enhanced Electrical Activation in In-Implanted Si _{0.35} Ge _{0.65} by C Co-Doping. Materials Research Letters, 2017, 5, 29-34.	8.7	1
15	Void evolution and porosity under arsenic ion irradiation in GaAs1â^'xSbxalloys. Journal Physics D: Applied Physics, 2017, 50, 125101.	2.8	12
16	Evidence for the formation of SiGe nanoparticles in Ge-implanted Si3N4. Journal of Applied Physics, 2017, 121, .	2.5	1
17	Elongation of metallic nanoparticles at the interface of silicon dioxide and silicon nitride. Nuclear Instruments & Methods in Physics Research B, 2017, 409, 328-332.	1.4	11
18	Morphology of ion irradiation induced nano-porous structures in Ge and Si1â^'xGex alloys. Journal of Applied Physics, 2017, 121, 115705.	2.5	8

Felipe Kremer

#	Article	IF	CITATIONS
19	Evidence of tetragonal distortion as the origin of the ferromagnetic ground state in Î ³ â~'Fe nanoparticles. Physical Review B, 2017, 96, .	3.2	1
20	Electrical and Structural Properties of In and In + C Doped Ge. Microscopy and Microanalysis, 2016, 22, 1444-1445.	0.4	0
21	EXAFS study of the structural properties of In and In + C implanted Ge. Journal of Physics: Conference Series, 2016, 712, 012102.	0.4	Ο
22	The influence of capping layers on pore formation in Ge during ion implantation. Journal of Applied Physics, 2016, 120, .	2.5	13
23	Electrical and structural properties of In-implanted Si1â^'xGex alloys. Journal of Applied Physics, 2016, 119, .	2.5	2
24	Orientation dependence of swift heavy ion track formation in potassium titanyl phosphate. Journal of Materials Research, 2016, 31, 2329-2336.	2.6	6
25	Porosity as a function of stoichiometry and implantation temperature in Ge/Si1â^'xGex alloys. Journal of Applied Physics, 2016, 119, .	2.5	20
26	Enhanced electrical activation in In-implanted Ge by C co-doping. Applied Physics Letters, 2015, 107, .	3.3	3
27	Formation of Ge nanoparticles in SiOxNy by ion implantation and thermal annealing. Journal of Applied Physics, 2015, 118, .	2.5	6
28	Structural and electrical properties of In-implanted Ge. Journal of Applied Physics, 2015, 118, .	2.5	7
29	Thermal response of nanoscale cylindrical inclusions of amorphous silica embedded in α-quartz. Physical Review B, 2014, 90, .	3.2	9
30	Nano-porosity in GaSb induced by swift heavy ion irradiation. Applied Physics Letters, 2014, 104, .	3.3	27
31	Enhancement of the magnetic properties of iron nanoparticles upon incorporation of samarium. Materials Research Express, 2014, 1, 026110.	1.6	2
32	Phase transformation of ZnMoO4 by localized thermal spike. Journal of Applied Physics, 2014, 115, .	2.5	13
33	Latent ion tracks in amorphous silicon. Physical Review B, 2013, 88, .	3.2	31
34	Lift-off protocols for thin films for use in EXAFS experiments. Journal of Synchrotron Radiation, 2013, 20, 426-432.	2.4	12
35	Tracks and Voids in Amorphous Ge Induced by Swift Heavy-Ion Irradiation. Physical Review Letters, 2013, 110, 245502.	7.8	82
36	Tailoring the blue–violet photoluminescence from Sn-implanted SiO2using a two-step annealing process. Journal Physics D: Applied Physics, 2012, 45, 095304.	2.8	1

Felipe Kremer

#	Article	IF	CITATIONS
37	Direct observation of substitutional Ga after ion implantation in Ge by means of extended x-ray absorption fine structure. Applied Physics Letters, 2012, 101, .	3.3	6
38	Formation of dense and aligned planar arrangements of Pb nanoparticles at silica/silicon interfaces. Materials Research Society Symposia Proceedings, 2011, 1308, 60201.	0.1	0
39	Aging effects on the nucleation of Pb nanoparticles in silica. Journal of Applied Physics, 2011, 109, 014320.	2.5	14
40	Role of Thermodynamics in the Shape Transformation of Embedded Metal Nanoparticles Induced by Swift Heavy-Ion Irradiation. Physical Review Letters, 2011, 106, 095505.	7.8	100
41	Shape transformation of Sn nanocrystals induced by swift heavy-ion irradiation and the necessity of a molten ion track. Physical Review B, 2010, 82, .	3.2	24
42	Low temperature aging effects on the formation of Sn nanoclusters in SiO2â^•Si films and interfaces. Applied Physics Letters, 2007, 91, .	3.3	11
43	Correlation between structural evolution and photoluminescence of Sn nanoclusters in SiO2 layers. Nuclear Instruments & Methods in Physics Research B, 2006, 242, 157-160.	1.4	7