List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6047617/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | ALS-linked cytoplasmic FUS assemblies are compositionally different from physiological stress<br>granules and sequester hnRNPA3, a novel modifier of FUS toxicity. Neurobiology of Disease, 2022, 162,<br>105585.                            | 2.1 | 19        |
| 2  | Synaptic vesicle binding of α-synuclein is modulated by β- and γ-synucleins. Cell Reports, 2022, 39, 110675.                                                                                                                                 | 2.9 | 25        |
| 3  | In a search for efficient treatment for amyotrophic lateral sclerosis: Old drugs for new approaches.<br>Medicinal Research Reviews, 2021, 41, 2804-2822.                                                                                     | 5.0 | 13        |
| 4  | A bioisostere of Dimebon/Latrepirdine delays the onset and slows the progression of pathology in FUS transgenic mice. CNS Neuroscience and Therapeutics, 2021, 27, 765-775.                                                                  | 1.9 | 4         |
| 5  | Triple-Knockout, Synuclein-Free Mice Display Compromised Lipid Pattern. Molecules, 2021, 26, 3078.                                                                                                                                           | 1.7 | 2         |
| 6  | Kinetics of alpha-synuclein depletion in three brain regions following conditional pan-neuronal<br>inactivation of the encoding gene (Snca) by tamoxifen-induced Cre-recombination in adult mice.<br>Transgenic Research, 2021, 30, 867-873. | 1.3 | 2         |
| 7  | β-synuclein potentiates synaptic vesicle dopamine uptake and rescues dopaminergic neurons from<br>MPTP-induced death in the absence of other synucleins. Journal of Biological Chemistry, 2021, 297,<br>101375.                              | 1.6 | 10        |
| 8  | Toward a Disease-Modifying Therapy of Alpha-Synucleinopathies: New Molecules and New Approaches<br>Came into the Limelight. Molecules, 2021, 26, 7351.                                                                                       | 1.7 | 6         |
| 9  | Synuclein Deficiency Results in Age-Related Respiratory and Cardiovascular Dysfunctions in Mice.<br>Brain Sciences, 2020, 10, 583.                                                                                                           | 1.1 | 4         |
| 10 | Reduced complement of dopaminergic neurons in the substantia nigra pars compacta of mice with a<br>constitutive "low footprint―genetic knockout of alpha-synuclein. Molecular Brain, 2020, 13, 75.                                           | 1.3 | 6         |
| 11 | Frameshift peptides alter the properties of truncated FUS proteins in ALS-FUS. Molecular Brain, 2020, 13, 77.                                                                                                                                | 1.3 | 8         |
| 12 | Alterations in the nigrostriatal system following conditional inactivation of α-synuclein in neurons of adult and aging mice. Neurobiology of Aging, 2020, 91, 76-87.                                                                        | 1.5 | 24        |
| 13 | Long non-coding RNA Neat1 regulates adaptive behavioural response to stress in mice. Translational Psychiatry, 2020, 10, 171.                                                                                                                | 2.4 | 38        |
| 14 | Low Level of Expression of C-Terminally Truncated Human FUS Causes Extensive Changes in the Spinal<br>Cord Transcriptome of Asymptomatic Transgenic Mice. Neurochemical Research, 2020, 45, 1168-1179.                                       | 1.6 | 3         |
| 15 | Behavioural impairments in mice of a novel FUS transgenic line recapitulate features of frontotemporal lobar degeneration. Genes, Brain and Behavior, 2019, 18, e12607.                                                                      | 1.1 | 10        |
| 16 | CRISPR/Cas9-generated mouse model of Duchenne muscular dystrophy recapitulating a newly<br>identified large 430 kb deletion in the human <i>DMD</i> gene. DMM Disease Models and Mechanisms,<br>2019, 12, .                                  | 1.2 | 28        |
| 17 | Stem cells in human breast milk. Human Cell, 2019, 32, 223-230.                                                                                                                                                                              | 1.2 | 53        |
| 18 | Antiviral Immune Response as a Trigger of FUS Proteinopathy in Amyotrophic Lateral Sclerosis. Cell<br>Reports, 2019, 29, 4496-4508.e4.                                                                                                       | 2.9 | 30        |

VLADIMIR L BUCHMAN

| #  | Article                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | ALS-linked FUS mutations confer loss and gain of function in the nucleus by promoting excessive formation of dysfunctional paraspeckles. Acta Neuropathologica Communications, 2019, 7, 7.                                                                          | 2.4 | 103       |
| 20 | Protective paraspeckle hyper-assembly downstream of TDP-43 loss of function in amyotrophic lateral sclerosis. Molecular Neurodegeneration, 2018, 13, 30.                                                                                                            | 4.4 | 70        |
| 21 | Modulation of p-eIF2α cellular levels and stress granule assembly/disassembly by trehalose. Scientific Reports, 2017, 7, 44088.                                                                                                                                     | 1.6 | 22        |
| 22 | Chronically stressed or stress-preconditioned neurons fail to maintain stress granule assembly. Cell<br>Death and Disease, 2017, 8, e2788-e2788.                                                                                                                    | 2.7 | 38        |
| 23 | Generation of mouse lines with conditionally or constitutively inactivated Snca gene and<br>Rosa26-stop-lacZ reporter located in cis on the mouse chromosome 6. Transgenic Research, 2017, 26,<br>301-307.                                                          | 1.3 | 6         |
| 24 | Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase. Journal of<br>Neuroscience, 2016, 36, 10510-10521.                                                                                                                                     | 1.7 | 142       |
| 25 | Combinational losses of synucleins reveal their differential requirements for compensating<br>age-dependent alterations in motor behavior and dopamine metabolism. Neurobiology of Aging, 2016,<br>46, 107-112.                                                     | 1.5 | 44        |
| 26 | A Novel Interaction of the Catalytic Subunit of Protein Phosphatase 2A with the Adaptor Protein<br>CIN85 Suppresses Phosphatase Activity and Facilitates Platelet Outside-in αIIbβ3 Integrin Signaling.<br>Journal of Biological Chemistry, 2016, 291, 17360-17368. | 1.6 | 3         |
| 27 | Induction of de novo α-synuclein fibrillization in a neuronal model for Parkinson's disease.<br>Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E912-21.                                                                | 3.3 | 95        |
| 28 | Early lethality and neuronal proteinopathy in mice expressing cytoplasm-targeted FUS that lacks the<br>RNA recognition motif. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16,<br>402-409.                                                  | 1.1 | 17        |
| 29 | Calcium-responsive transactivator (CREST) protein shares a set of structural and functional traits with other proteins associated with amyotrophic lateral sclerosis. Molecular Neurodegeneration, 2015, 10, 20.                                                    | 4.4 | 25        |
| 30 | Gammaâ€ <del>s</del> ynuclein pathology in amyotrophic lateral sclerosis. Annals of Clinical and Translational<br>Neurology, 2015, 2, 29-37.                                                                                                                        | 1.7 | 21        |
| 31 | Control of ventricular excitability by neurons of the dorsal motor nucleus of the vagus nerve. Heart<br>Rhythm, 2015, 12, 2285-2293.                                                                                                                                | 0.3 | 82        |
| 32 | C9ORF72 hexanucleotide repeat expansion in ALS patients from the Central European Russia population. Neurobiology of Aging, 2015, 36, 2908.e5-2908.e9.                                                                                                              | 1.5 | 12        |
| 33 | Hunk/Mak-v is a negative regulator of intestinal cell proliferation. BMC Cancer, 2015, 15, 110.                                                                                                                                                                     | 1.1 | 15        |
| 34 | A novel resource for studying function and dysfunction of α-synuclein: mouse lines for modulation of endogenous Snca gene expression. Scientific Reports, 2015, 5, 16615.                                                                                           | 1.6 | 17        |
| 35 | Multistep process of FUS aggregation in the cell cytoplasm involves RNA-dependent and RNA-independent mechanisms. Human Molecular Genetics, 2014, 23, 5211-5226.                                                                                                    | 1.4 | 80        |
| 36 | Compromised paraspeckle formation as a pathogenic factor in FUSopathies. Human Molecular<br>Genetics, 2014, 23, 2298-2312.                                                                                                                                          | 1.4 | 112       |

| #  | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Simultaneous and independent detection of C9ORF72 alleles with low and high number of GGGGCC repeats using an optimised protocol of Southern blot hybridisation. Molecular Neurodegeneration, 2013, 8, 12.                                                | 4.4 | 52        |
| 38 | Endogenous alpha-synuclein influences the number of dopaminergic neurons in mouse substantia<br>nigra. Experimental Neurology, 2013, 248, 541-545.                                                                                                        | 2.0 | 60        |
| 39 | Chronic Administration of Dimebon does not Ameliorate Amyloid-β Pathology in 5xFAD Transgenic<br>Mice. Journal of Alzheimer's Disease, 2013, 36, 589-596.                                                                                                 | 1.2 | 26        |
| 40 | Residual association at C9orf72 suggests an alternative amyotrophic lateral sclerosis-causing hexanucleotide repeat. Neurobiology of Aging, 2013, 34, 2234.e1-2234.e7.                                                                                    | 1.5 | 22        |
| 41 | Fused in Sarcoma (FUS) Protein Lacking Nuclear Localization Signal (NLS) and Major RNA Binding<br>Motifs Triggers Proteinopathy and Severe Motor Phenotype in Transgenic Mice. Journal of Biological<br>Chemistry, 2013, 288, 25266-25274.                | 1.6 | 95        |
| 42 | Recruitment into stress granules prevents irreversible aggregation of FUS protein mislocalized to the cytoplasm. Cell Cycle, 2013, 12, 3383-3391.                                                                                                         | 1.3 | 55        |
| 43 | Chronic Administration of Dimebon Ameliorates Pathology in TauP301S Transgenic Mice. Journal of Alzheimer's Disease, 2013, 33, 1041-1049.                                                                                                                 | 1.2 | 48        |
| 44 | <i>C9ORF72</i> transcription in a frontotemporal dementia case with two expanded alleles.<br>Neurology, 2013, 81, 1719-1721.                                                                                                                              | 1.5 | 25        |
| 45 | Î <sup>3</sup> -synuclein is a novel player in the control of body lipid metabolism. Adipocyte, 2013, 2, 276-280.                                                                                                                                         | 1.3 | 9         |
| 46 | Contrasting Effects of α-Synuclein and γ-Synuclein on the Phenotype of Cysteine String Protein α (CSPα)<br>Null Mutant Mice Suggest Distinct Function of these Proteins in Neuronal Synapses. Journal of<br>Biological Chemistry, 2012, 287, 44471-44477. | 1.6 | 24        |
| 47 | Increased lipolysis and altered lipid homeostasis protect Â-synuclein-null mutant mice from<br>diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America,<br>2012, 109, 20943-20948.                          | 3.3 | 26        |
| 48 | Increased levels of the HER1 adaptor protein Ruk l /CIN85 contribute to breast cancer malignancy.<br>Carcinogenesis, 2012, 33, 1976-1984.                                                                                                                 | 1.3 | 31        |
| 49 | Dimebon Slows Progression of Proteinopathy in Î <sup>3</sup> -Synuclein Transgenic Mice. Neurotoxicity Research, 2012, 22, 33-42.                                                                                                                         | 1.3 | 43        |
| 50 | Deletion of alphaâ€synuclein decreases impulsivity in mice. Genes, Brain and Behavior, 2012, 11, 137-146.                                                                                                                                                 | 1.1 | 31        |
| 51 | Selective pattern of motor system damage in gamma-synuclein transgenic mice mirrors the respective pathology in amyotrophic lateral sclerosis. Neurobiology of Disease, 2012, 48, 124-131.                                                                | 2.1 | 32        |
| 52 | Identification of Nedd4 E3 Ubiquitin Ligase as a Binding Partner and Regulator of MAK-V Protein Kinase.<br>PLoS ONE, 2012, 7, e39505.                                                                                                                     | 1.1 | 5         |
| 53 | Lipid Classes and Fatty Acid Patterns are Altered in the Brain of γ‣ynuclein Null Mutant Mice. Lipids, 2011, 46, 121-130.                                                                                                                                 | 0.7 | 14        |
| 54 | Functional Alterations to the Nigrostriatal System in Mice Lacking All Three Members of the Synuclein Family. Journal of Neuroscience, 2011, 31, 7264-7274.                                                                                               | 1.7 | 158       |

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Dimebon Does Not Ameliorate Pathological Changes Caused by Expression of Truncated (1–120) Human<br>Alpha-Synuclein in Dopaminergic Neurons of Transgenic Mice. Neurodegenerative Diseases, 2011, 8,<br>430-437.                       | 0.8 | 12        |
| 56 | Myelination transition zone astrocytes are constitutively phagocytic and have synuclein dependent<br>reactivity in glaucoma. Proceedings of the National Academy of Sciences of the United States of<br>America, 2011, 108, 1176-1181. | 3.3 | 189       |
| 57 | Emerging Roles of Ruk/CIN85 in Vesicle-Mediated Transport, Adhesion, Migration and Malignancy.<br>Traffic, 2010, 11, 721-731.                                                                                                          | 1.3 | 50        |
| 58 | Pro-survival activity of the MAK-V protein kinase in PC12 cells. Cell Cycle, 2010, 9, 4248-4249.                                                                                                                                       | 1.3 | 6         |
| 59 | αβγ-Synuclein triple knockout mice reveal age-dependent neuronal dysfunction. Proceedings of the<br>National Academy of Sciences of the United States of America, 2010, 107, 19573-19578.                                              | 3.3 | 261       |
| 60 | α-Synuclein Promotes SNARE-Complex Assembly in Vivo and in Vitro. Science, 2010, 329, 1663-1667.                                                                                                                                       | 6.0 | 1,476     |
| 61 | Lack of involvement of alpha-synuclein in unconditioned anxiety in mice. Behavioural Brain Research, 2010, 209, 234-240.                                                                                                               | 1.2 | 30        |
| 62 | Absence of α-synuclein affects dopamine metabolism and synaptic markers in the striatum of aging mice.<br>Neurobiology of Aging, 2010, 31, 796-804.                                                                                    | 1.5 | 106       |
| 63 | α-Synuclein and dopamine at the crossroads of Parkinson's disease. Trends in Neurosciences, 2010, 33, 559-568.                                                                                                                         | 4.2 | 233       |
| 64 | Differential Expression of Sarcoplasmic and Myofibrillar Proteins of Rat Soleus Muscle during Denervation Atrophy. Bioscience, Biotechnology and Biochemistry, 2009, 73, 1748-1756.                                                    | 0.6 | 32        |
| 65 | Methylene blue and dimebon inhibit aggregation of TDPâ€43 in cellular models. FEBS Letters, 2009, 583, 2419-2424.                                                                                                                      | 1.3 | 102       |
| 66 | Intersectin 1 forms a complex with adaptor protein Ruk/CIN85 in vivo independently of epidermal growth factor stimulation. Cellular Signalling, 2009, 21, 753-759.                                                                     | 1.7 | 27        |
| 67 | Hindering of proteinopathy-induced neurodegeneration as a new mechanism of action for neuroprotectors and cognition enhancing compounds. Doklady Biochemistry and Biophysics, 2009, 428, 235-238.                                      | 0.3 | 24        |
| 68 | γ-Synucleinopathy: neurodegeneration associated with overexpression of the mouse protein. Human<br>Molecular Genetics, 2009, 18, 1779-1794.                                                                                            | 1.4 | 101       |
| 69 | Modulation of α-synuclein expression in transgenic animals for modelling synucleinopathies — is the juice worth the squeeze?. Neurotoxicity Research, 2008, 14, 329-341.                                                               | 1.3 | 25        |
| 70 | Localization of Synucleins in the Mammalian Cochlea. JARO - Journal of the Association for Research in Otolaryngology, 2008, 9, 452-463.                                                                                               | 0.9 | 19        |
| 71 | Adaptor Protein Ruk/CIN85 is Associated with a Subset of COPI-Coated Membranes of the Golgi<br>Complex. Traffic, 2008, 9, 798-812.                                                                                                     | 1.3 | 20        |
| 72 | Increased striatal dopamine release and hyperdopaminergicâ€like behaviour in mice lacking both<br>alphaâ€synuclein and gammaâ€synuclein. European Journal of Neuroscience, 2008, 27, 947-957.                                          | 1.2 | 138       |

| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Î <sup>3</sup> -Synuclein Is an Adipocyte-Neuron Gene Coordinately Expressed with Leptin and Increased in Human<br>Obesity. Journal of Nutrition, 2008, 138, 841-848.                                                                                      | 1.3 | 23        |
| 74 | HD-PTP and Alix share some membrane-traffic related proteins that interact with their Bro1 domains or proline-rich regions. Archives of Biochemistry and Biophysics, 2007, 457, 142-149.                                                                   | 1.4 | 58        |
| 75 | Whole genome expression analyses of single- and double-knock-out mice implicate partially overlapping functions of alpha- and gamma-synuclein. Neurogenetics, 2007, 8, 71-81.                                                                              | 0.7 | 30        |
| 76 | Autoantibodies to alpha-synuclein in inherited Parkinson's disease. Journal of Neurochemistry, 2006,<br>101, 749-756.                                                                                                                                      | 2.1 | 161       |
| 77 | Peripheral Sensory Neurons Survive in the Absence of α- and γ-Synucleins. Journal of Molecular Neuroscience, 2005, 25, 157-164.                                                                                                                            | 1.1 | 17        |
| 78 | Protein Aggregation in Retinal Cells and Approaches to Cell Protection. Cellular and Molecular Neurobiology, 2005, 25, 1051-1066.                                                                                                                          | 1.7 | 61        |
| 79 | Developmental loss and resistance to MPTP toxicity of dopaminergic neurones in substantia nigra pars<br>compacta of gamma-synuclein, alpha-synuclein and double alpha/gamma-synuclein null mutant mice.<br>Journal of Neurochemistry, 2004, 89, 1126-1136. | 2.1 | 135       |
| 80 | Cloning and developmental expression of MARK/Par-1/MELK-related protein kinase xMAK-V in Xenopus<br>laevis. Development Genes and Evolution, 2004, 214, 139-143.                                                                                           | 0.4 | 7         |
| 81 | Multiple Domains of Ruk/CIN85/SETA/CD2BP3 are Involved in Interaction with p851 <sup>±</sup> Regulatory Subunit of PI 3-kinase. Journal of Molecular Biology, 2004, 343, 1135-1146.                                                                        | 2.0 | 22        |
| 82 | Parkinson's disease α-synuclein mutations exhibit defective axonal transport in cultured neurons.<br>Journal of Cell Science, 2004, 117, 1017-1024.                                                                                                        | 1.2 | 163       |
| 83 | Part II: α-synuclein and its molecular pathophysiological role in neurodegenerative disease.<br>Neuropharmacology, 2003, 45, 14-44.                                                                                                                        | 2.0 | 254       |
| 84 | Neurons Expressing the Highest Levels of Î <sup>3</sup> -Synuclein Are Unaffected by Targeted Inactivation of the<br>Gene. Molecular and Cellular Biology, 2003, 23, 8233-8245.                                                                            | 1.1 | 65        |
| 85 | Expression pattern of dd4, a sole member of the d4 family of transcription factors in Drosophila melanogaster. Mechanisms of Development, 2002, 114, 119-123.                                                                                              | 1.7 | 15        |
| 86 | Organization of the mouse Ruk locus and expression of isoforms in mouse tissues. Gene, 2002, 295, 13-17.                                                                                                                                                   | 1.0 | 38        |
| 87 | Ruk is ubiquitinated but not degraded by the proteasome. FEBS Journal, 2002, 269, 3402-3408.                                                                                                                                                               | 0.2 | 26        |
| 88 | Role of STAT3 and PI 3-Kinase/Akt in Mediating the Survival Actions of Cytokines on Sensory Neurons.<br>Molecular and Cellular Neurosciences, 2001, 18, 270-282.                                                                                           | 1.0 | 135       |
| 89 | Cerd4, third member of the d4 gene family: expression and organization of genomic locus. Mammalian<br>Genome, 2001, 12, 862-866.                                                                                                                           | 1.0 | 17        |
| 90 | Role of PI 3-kinase, Akt and Bcl-2–related proteins in sustaining the survival of neurotrophic<br>factor–independent adult sympathetic neurons. Journal of Cell Biology, 2001, 154, 995-1006.                                                              | 2.3 | 109       |

| #   | Article                                                                                                                                                                                    | lF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Induction of neuronal death by $\hat{l}\pm$ -synuclein. European Journal of Neuroscience, 2000, 12, 3073-3077.                                                                             | 1.2  | 151       |
| 92  | Negative regulation of PI 3-kinase by Ruk, a novel adaptor protein. EMBO Journal, 2000, 19, 4015-4025.                                                                                     | 3.5  | 123       |
| 93  | Structure and expression of two members of the d4 gene family in mouse. Mammalian Genome, 2000, 11, 72-74.                                                                                 | 1.0  | 11        |
| 94  | Chicken synucleins: cloning and expression in the developing embryo. Mechanisms of Development, 2000, 99, 195-198.                                                                         | 1.7  | 19        |
| 95  | Mutations in the gene encoding human persyn are not associated with amyotrophic lateral sclerosis or familial Parkinson's disease. Neuroscience Letters, 1999, 274, 21-24.                 | 1.0  | 16        |
| 96  | Developmentally Regulated Expression of Persyn, a Member of the Synuclein Family, in Skin.<br>Experimental Cell Research, 1999, 246, 308-311.                                              | 1.2  | 28        |
| 97  | Genomic Structure and Chromosomal Localization of the Mouse Persyn Gene. Genomics, 1999, 56, 224-227.                                                                                      | 1.3  | 4         |
| 98  | Persyn, a member of the synuclein family, influences neurofilament network integrity. Nature<br>Neuroscience, 1998, 1, 101-103.                                                            | 7.1  | 107       |
| 99  | GFRα-4 and the tyrosine kinase Ret form a functional receptor complex for persephin. Current Biology, 1998, 8, 1019-1022.                                                                  | 1.8  | 143       |
| 100 | GFRα-4, a New GDNF Family Receptor. Molecular and Cellular Neurosciences, 1998, 11, 117-126.                                                                                               | 1.0  | 89        |
| 101 | Persyn, a Member of the Synuclein Family, Has a Distinct Pattern of Expression in the Developing<br>Nervous System. Journal of Neuroscience, 1998, 18, 9335-9341.                          | 1.7  | 148       |
| 102 | TrkB Variants with Deletions in the Leucine-rich Motifs of the Extracellular Domain. Journal of<br>Biological Chemistry, 1997, 272, 13019-13025.                                           | 1.6  | 55        |
| 103 | Molecular cloning and expression pattern of rpr-1 , a resiniferatoxin-binding,<br>phosphotriesterase-related protein, expressed in rat kidney tubules 1. FEBS Letters, 1997, 410, 378-382. | 1.3  | 9         |
| 104 | Rat and chicken s-rex/NSP mRNA: nucleotide sequence of main transcripts and expression of splice variants in rat tissues. Gene, 1997, 184, 205-210.                                        | 1.0  | 20        |
| 105 | Neurturin responsiveness requires a GPI-linked receptor and the Ret receptor tyrosine kinase. Nature, 1997, 387, 721-724.                                                                  | 13.7 | 281       |
| 106 | Intracellular Compartmentalization of Two Differentially Spliceds-rex/NSPmRNAs in Neurons.<br>Molecular and Cellular Neurosciences, 1996, 7, 289-303.                                      | 1.0  | 27        |
| 107 | The d4 Gene Family in the Human Genome. Genomics, 1996, 36, 174-177.                                                                                                                       | 1.3  | 25        |
| 108 | Subtractive cDNA Cloning from Limited Amounts of Biological Material. Analytical Biochemistry, 1996, 237, 155-157.                                                                         | 1.1  | 2         |

| #   | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | GDNF is an age-specific survival factor for sensory and autonomic neurons. Neuron, 1995, 15, 821-828.                                                                                                           | 3.8 | 385       |
| 110 | Differential splicing creates a diversity of transcripts from a neurospecific developmentally<br>regulated gene encoding a protein with new zinc-finger motifs. Nucleic Acids Research, 1992, 20,<br>5579-5585. | 6.5 | 25        |
| 111 | Antiviral Immune Response as a Trigger of FUS Proteinopathy in Amyotrophic Lateral Sclerosis. SSRN<br>Electronic Journal, 0, , .                                                                                | 0.4 | 0         |