
Ricardo J Rodrigues

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6047574/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adenosine A2A Receptors Contribute to the Radial Migration of Cortical Projection Neurons through the Regulation of Neuronal Polarization and Axon Formation. Cerebral Cortex, 2021, 31, 5652-5663.	1.6	19
2	Convergence of adenosine and GABA signaling for synapse stabilization during development. Science, 2021, 374, eabk2055.	6.0	44
3	Neurogenesis and Gliogenesis: Relevance of Adenosine for Neuroregeneration in Brain Disorders. Journal of Caffeine and Adenosine Research, 2019, 9, 129-144.	0.8	5
4	Purinergic signalling and brain development. Seminars in Cell and Developmental Biology, 2019, 95, 34-41.	2.3	39
5	Glutamate-induced and NMDA receptor-mediated neurodegeneration entails P2Y1 receptor activation. Cell Death and Disease, 2018, 9, 297.	2.7	58
6	Antimicrobial peptide-gold nanoscale therapeutic formulation with high skin regenerative potential. Journal of Controlled Release, 2017, 262, 58-71.	4.8	48
7	Hierarchical glucocorticoid-endocannabinoid interplay regulates the activation of the nucleus accumbens by insulin. Brain Research Bulletin, 2016, 124, 222-230.	1.4	12
8	Presynaptic P2X1-3 and α3-containing nicotinic receptors assemble into functionally interacting ion channels in the rat hippocampus. Neuropharmacology, 2016, 105, 241-257.	2.0	14
9	High sucrose consumption induces memory impairment in rats associated with electrophysiological modifications but not with metabolic changes in the hippocampus. Neuroscience, 2016, 315, 196-205.	1.1	22
10	Stimulation of brain glucose uptake by cannabinoid CB2 receptors and its therapeutic potential in Alzheimer's disease. Neuropharmacology, 2016, 110, 519-529.	2.0	43
11	ATP as a multi-target danger signal in the brain. Frontiers in Neuroscience, 2015, 9, 148.	1.4	205
12	Presynaptic adenosine <scp>A_{2A}</scp> receptors dampen cannabinoid <scp>CB</scp> ₁ receptorâ€mediated inhibition of corticostriatal glutamatergic transmission. British Journal of Pharmacology, 2015, 172, 1074-1086.	2.7	45
13	Adenosine A _{2b} receptors control A ₁ receptorâ€mediated inhibition of synaptic transmission in the mouse hippocampus. European Journal of Neuroscience, 2015, 41, 878-888.	1.2	43
14	Adenosine A2B receptor activation stimulates glucose uptake in the mouse forebrain. Purinergic Signalling, 2015, 11, 561-569.	1.1	26
15	Predominant loss of glutamatergic terminal markers in a β-amyloid peptide model of Alzheimer's disease. Neuropharmacology, 2014, 76, 51-56.	2.0	77
16	CRMP2 Tethers Kainate Receptor Activity to Cytoskeleton Dynamics during Neuronal Maturation. Journal of Neuroscience, 2013, 33, 18298-18310.	1.7	42
17	Metabotropic signaling by kainate receptors. Environmental Sciences Europe, 2012, 1, 399-410.	2.6	10
18	Enhanced role of adenosine A2A receptors in the modulation of LTP in the rat hippocampus upon ageing. European Journal of Neuroscience, 2011, 34, 12-21.	1.2	149

RICARDO J RODRIGUES

#	Article	IF	CITATIONS
19	Modification upon aging of the density of presynaptic modulation systems in the hippocampus. Neurobiology of Aging, 2009, 30, 1877-1884.	1.5	117
20	GABA release by basket cells onto Purkinje cells, in rat cerebellar slices, is directly controlled by presynaptic purinergic receptors, modulating Ca2+ influx. Cell Calcium, 2008, 44, 521-532.	1.1	34
21	Modification of adenosine modulation of acetylcholine release in the hippocampus of aged rats. Neurobiology of Aging, 2008, 29, 1597-1601.	1.5	54
22	Electrophysiological and Immunocytochemical Evidence for P2X Purinergic Receptors in Pancreatic β Cells. Pancreas, 2008, 36, 279-283.	0.5	33
23	Modification of purinergic signaling in the hippocampus of streptozotocin-induced diabetic rats. Neuroscience, 2007, 149, 382-391.	1.1	46
24	Anandamide and NADA bi-directionally modulate presynaptic Ca2+ levels and transmitter release in the hippocampus. British Journal of Pharmacology, 2007, 151, 551-563.	2.7	34
25	Differential glutamate-dependent and glutamate-independent adenosine A1receptor-mediated modulation of dopamine release in different striatal compartments. Journal of Neurochemistry, 2007, 101, 355-363.	2.1	104
26	Interaction Between P2X and Nicotinic Acetylcholine Receptors in Glutamate Nerve Terminals of the Rat Hippocampus. Journal of Molecular Neuroscience, 2006, 30, 173-176.	1.1	17
27	Trkb receptors modulation of glutamate release is limited to a subset of nerve terminals in the adult rat hippocampus. Journal of Neuroscience Research, 2006, 83, 832-844.	1.3	27
28	Presynaptic Control of Striatal Glutamatergic Neurotransmission by Adenosine A1-A2A Receptor Heteromers. Journal of Neuroscience, 2006, 26, 2080-2087.	1.7	553
29	Saccharomyces cerevisiae Hog1 Protein Phosphorylation upon Exposure to Bacterial Endotoxin. Journal of Biological Chemistry, 2006, 281, 24687-24694.	1.6	31
30	CB1 Receptor Antagonism Increases Hippocampal Acetylcholine Release: Site and Mechanism of Action. Molecular Pharmacology, 2006, 70, 1236-1245.	1.0	78
31	Co-localization and functional interaction between adenosine A2A and metabotropic group 5 receptors in glutamatergic nerve terminals of the rat striatum. Journal of Neurochemistry, 2005, 92, 433-441.	2.1	184
32	Involvement of Cannabinoid Receptors in the Regulation of Neurotransmitter Release in the Rodent Striatum: A Combined Immunochemical and Pharmacological Analysis. Journal of Neuroscience, 2005, 25, 2874-2884.	1.7	221
33	Presynaptic kainate receptors are localized close to release sites in rat hippocampal synapses. Neurochemistry International, 2005, 47, 309-316.	1.9	20
34	Different roles of adenosine A1, A2A and A3 receptors in controlling kainate-induced toxicity in cortical cultured neurons. Neurochemistry International, 2005, 47, 317-325.	1.9	40
35	Adenosine A1 and A2A receptors are co-expressed in pyramidal neurons and co-localized in glutamatergic nerve terminals of the rat hippocampus. Neuroscience, 2005, 133, 79-83.	1.1	111
36	Dual Presynaptic Control by ATP of Glutamate Release via Facilitatory P2X1, P2X2/3, and P2X3 and Inhibitory P2Y1, P2Y2, and/or P2Y4 Receptors in the Rat Hippocampus. Journal of Neuroscience, 2005, 25, 6286-6295.	1.7	201

#	Article	IF	CITATIONS
37	Solubilization and immunological identification of presynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors in the rat hippocampus. Neuroscience Letters, 2003, 336, 97-100.	1.0	28
38	Purinergic P2 receptors trigger adenosine release leading to adenosine A2A receptor activation and facilitation of long-term potentiation in rat hippocampal slices. Neuroscience, 2003, 122, 111-121.	1.1	53