Gabriel Schaumann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6047547/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bright Laser-Driven Neutron Source Based on the Relativistic Transparency of Solids. Physical Review Letters, 2013, 110, 044802.	7.8	271
2	Laser-driven platform for generation and characterization of strong quasi-static magnetic fields. New Journal of Physics, 2015, 17, 083051.	2.9	130
3	Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields. Nature Communications, 2018, 9, 102.	12.8	86
4	Status of PHELIX laser and first experiments. Laser and Particle Beams, 2005, 23, .	1.0	61
5	Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics. Physics of Plasmas, 2018, 25, .	1.9	58
6	Laser-plasmas in the relativistic-transparency regime: Science and applications. Physics of Plasmas, 2017, 24, 056702.	1.9	44
7	Characterization of a novel, short pulse laser-driven neutron source. Physics of Plasmas, 2013, 20, .	1.9	43
8	Intense, directed neutron beams from a laser-driven neutron source at PHELIX. Physics of Plasmas, 2018, 25, .	1.9	40
9	Neutron imaging with the short-pulse laser driven neutron source at the Trident laser facility. Journal of Applied Physics, 2016, 120, .	2.5	32
10	Targets with cone-shaped microstructures from various materials for enhanced high-intensity laser–matter interaction. High Power Laser Science and Engineering, 2021, 9, .	4.6	32
11	Enhanced brightness of a laser-driven x-ray and particle source by microstructured surfaces of silicon targets. Physics of Plasmas, 2020, 27, .	1.9	22
12	Demonstration of non-destructive and isotope-sensitive material analysis using a short-pulsed laser-driven epi-thermal neutron source. Nature Communications, 2022, 13, 1173.	12.8	18
13	Analysis of laser-proton acceleration experiments for development of empirical scaling laws. Physical Review E, 2021, 104, 045210.	2.1	12
14	Influence of fs-laser desorption on target normal sheath accelerated ions. Physical Review Special Topics: Accelerators and Beams, 2013, 16, .	1.8	9
15	Laser-induced microstructures on silicon for laser-driven acceleration experiments. High Power Laser Science and Engineering, 2017, 5, .	4.6	9
16	Spatially resolved online particle detector using scintillators for laser-driven particle sources. Review of Scientific Instruments, 2021, 92, 093302.	1.3	7
17	Microstructured layered targets for improved laser-induced x-ray backlighters. Physical Review E, 2021, 104, 065207.	2.1	4
18	Fabrication and characterization of thin polymer targets for laser-driven ion acceleration. Journal of Physics: Conference Series, 2016, 713, 012005.	0.4	2

#	Article	IF	CITATIONS
19	Development of an electrothermal micro positioning platform for laser targets with two degrees of freedom. , 2016, , .		1