
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6047146/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2011, 29, .	0.9	678
2	Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	0.9	659
3	Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3. Applied Physics Letters, 2006, 89, 042112.	1.5	646
4	On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3. Journal of Applied Physics, 2008, 104, .	1.1	479
5	Silicon surface passivation by atomic layer deposited Al2O3. Journal of Applied Physics, 2008, 104, .	1.1	415
6	Surface passivation of highâ€efficiency silicon solar cells by atomicâ€layerâ€deposited Al ₂ O ₃ . Progress in Photovoltaics: Research and Applications, 2008, 16, 461-466.	4.4	414
7	Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3. Applied Physics Letters, 2007, 91, .	1.5	370
8	Determining the material structure of microcrystalline silicon from Raman spectra. Journal of Applied Physics, 2003, 94, 3582-3588.	1.1	325
9	High efficiency n-type Si solar cells on Al2O3-passivated boron emitters. Applied Physics Letters, 2008, 92, .	1.5	316
10	The use of atomic layer deposition in advanced nanopatterning. Nanoscale, 2014, 6, 10941-10960.	2.8	304
11	Passivating Contacts for Crystalline Silicon Solar Cells: From Concepts and Materials to Prospects. IEEE Journal of Photovoltaics, 2018, 8, 373-388.	1.5	285
12	<i>In situ</i> spectroscopic ellipsometry as a versatile tool for studying atomic layer deposition. Journal Physics D: Applied Physics, 2009, 42, 073001.	1.3	249
13	From the Bottom-Up: Toward Area-Selective Atomic Layer Deposition with High Selectivity. Chemistry of Materials, 2019, 31, 2-12.	3.2	248
14	Vacancies and voids in hydrogenated amorphous silicon. Applied Physics Letters, 2003, 82, 1547-1549.	1.5	246
15	Plasma-assisted atomic layer deposition of Al2O3 moisture permeation barriers on polymers. Applied Physics Letters, 2006, 89, 081915.	1.5	244
16	Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UVâ€Irradiated TiO ₂ Scaffolds on Plastic Substrates. Advanced Energy Materials, 2015, 5, 1401808.	10.2	241
17	Plasma and Thermal ALD of Al[sub 2]O[sub 3] in a Commercial 200â€,mm ALD Reactor. Journal of the Electrochemical Society, 2007, 154, G165.	1.3	237
18	Influence of the Deposition Temperature on the c-Si Surface Passivation by Al[sub 2]O[sub 3] Films Synthesized by ALD and PECVD. Electrochemical and Solid-State Letters, 2010, 13, H76.	2.2	198

#	Article	IF	CITATIONS
19	Silicon surface passivation by ultrathin Al ₂ O ₃ films synthesized by thermal and plasma atomic layer deposition. Physica Status Solidi - Rapid Research Letters, 2010, 4, 10-12.	1.2	185
20	Atomic layer deposition for photovoltaics: applications and prospects for solar cell manufacturing. Semiconductor Science and Technology, 2012, 27, 074002.	1.0	178
21	Hydrogen induced passivation of Si interfaces by Al2O3 films and SiO2/Al2O3 stacks. Applied Physics Letters, 2010, 97, .	1.5	168
22	Conformality of Plasma-Assisted ALD: Physical Processes and Modeling. Journal of the Electrochemical Society, 2010, 157, G241.	1.3	157
23	Low Temperature Plasma-Enhanced Atomic Layer Deposition of Metal Oxide Thin Films. Journal of the Electrochemical Society, 2010, 157, P66.	1.3	151
24	Influence of the Oxidant on the Chemical and Field-Effect Passivation of Si by ALD Al[sub 2]O[sub 3]. Electrochemical and Solid-State Letters, 2011, 14, H1.	2.2	151
25	Controlling the fixed charge and passivation properties of Si(100)/Al2O3 interfaces using ultrathin SiO2 interlayers synthesized by atomic layer deposition. Journal of Applied Physics, 2011, 110, .	1.1	150
26	Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges. Sustainable Energy and Fuels, 2017, 1, 30-55.	2.5	150
27	Status and prospects of plasma-assisted atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	0.9	148
28	Stability of Al2O3 and Al2O3/a-SiNx:H stacks for surface passivation of crystalline silicon. Journal of Applied Physics, 2009, 106, .	1.1	145
29	Supported Core/Shell Bimetallic Nanoparticles Synthesis by Atomic Layer Deposition. Chemistry of Materials, 2012, 24, 2973-2977.	3.2	142
30	Area-Selective Atomic Layer Deposition of SiO ₂ Using Acetylacetone as a Chemoselective Inhibitor in an ABC-Type Cycle. ACS Nano, 2017, 11, 9303-9311.	7.3	136
31	Influence of annealing and Al2O3 properties on the hydrogen-induced passivation of the Si/SiO2 interface. Journal of Applied Physics, 2012, 111, .	1.1	133
32	Negative charge and charging dynamics in Al2O3 films on Si characterized by second-harmonic generation. Journal of Applied Physics, 2008, 104, .	1.1	131
33	Plasma-Assisted ALD for the Conformal Deposition of SiO ₂ : Process, Material and Electronic Properties. Journal of the Electrochemical Society, 2012, 159, H277-H285.	1.3	127
34	Influence of Oxygen Exposure on the Nucleation of Platinum Atomic Layer Deposition: Consequences for Film Growth, Nanopatterning, and Nanoparticle Synthesis. Chemistry of Materials, 2013, 25, 1905-1911.	3.2	123
35	Surface chemistry of plasma-assisted atomic layer deposition of Al2O3 studied by infrared spectroscopy. Applied Physics Letters, 2008, 92, .	1.5	117
36	Role of field-effect on c-Si surface passivation by ultrathin (2–20 nm) atomic layer deposited Al2O3. Applied Physics Letters, 2010, 96, .	1.5	117

#	Article	IF	CITATIONS
37	Atomic Layer Etching: What Can We Learn from Atomic Layer Deposition?. ECS Journal of Solid State Science and Technology, 2015, 4, N5023-N5032.	0.9	115
38	Plasma chemistry aspects of a-Si:H deposition using an expanding thermal plasma. Journal of Applied Physics, 1998, 84, 2426-2435.	1.1	111
39	Surface reactions during atomic layer deposition of Pt derived from gas phase infrared spectroscopy. Applied Physics Letters, 2009, 95, .	1.5	111
40	Atomic layer deposition for nanostructured Li-ion batteries. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	0.9	111
41	Atomic layer deposition of molybdenum oxide from (N <i>t</i> Bu)2(NMe2)2Mo and O2 plasma. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	0.9	111
42	Deposition of TiN and HfO2 in a commercial 200mm remote plasma atomic layer deposition reactor. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 1357-1366.	0.9	107
43	Remote Plasma ALD of Platinum and Platinum Oxide Films. Electrochemical and Solid-State Letters, 2009, 12, G34.	2.2	107
44	Catalytic Combustion and Dehydrogenation Reactions during Atomic Layer Deposition of Platinum. Chemistry of Materials, 2012, 24, 1752-1761.	3.2	107
45	Reaction mechanisms during plasma-assisted atomic layer deposition of metal oxides: A case study for Al2O3. Journal of Applied Physics, 2008, 103, .	1.1	101
46	Ultra-Thin Aluminium Oxide Films Deposited by Plasma-Enhanced Atomic Layer Deposition for Corrosion Protection. Journal of the Electrochemical Society, 2011, 158, C132.	1.3	100
47	Influence of the high-temperature "firing―step on high-rate plasma deposited silicon nitride films used as bulk passivating antireflection coatings on silicon solar cells. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 2123.	1.6	99
48	In situ reaction mechanism studies of plasma-assisted atomic layer deposition of Al2O3. Applied Physics Letters, 2006, 89, 131505.	1.5	99
49	Atomic Layer Deposition of LiCoO ₂ Thin-Film Electrodes for All-Solid-State Li-Ion Micro-Batteries. Journal of the Electrochemical Society, 2013, 160, A3066-A3071.	1.3	99
50	Hydrogenated amorphous silicon deposited at very high growth rates by an expanding Ar–H2–SiH4 plasma. Journal of Applied Physics, 2001, 89, 2404-2413.	1.1	98
51	In situspectroscopic ellipsometry study on the growth of ultrathin TiN films by plasma-assisted atomic layer deposition. Journal of Applied Physics, 2006, 100, 023534.	1.1	96
52	Nucleation and growth of Pt atomic layer deposition on Al2O3 substrates using (methylcyclopentadienyl)-trimethyl platinum and O2 plasma. Journal of Applied Physics, 2011, 109, .	1.1	96
53	Substrate-biasing during plasma-assisted atomic layer deposition to tailor metal-oxide thin film growth. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	0.9	95
54	Low-Temperature Deposition of TiN by Plasma-Assisted Atomic Layer Deposition. Journal of the Electrochemical Society, 2006, 153, G956.	1.3	93

#	Article	IF	CITATIONS
55	Lowâ€ŧemperature atomic layer deposition of MoO <i>_x</i> for silicon heterojunction solar cells. Physica Status Solidi - Rapid Research Letters, 2015, 9, 393-396.	1.2	93
56	Low-temperature plasma-enhanced atomic layer deposition of 2-D MoS ₂ : large area, thickness control and tuneable morphology. Nanoscale, 2018, 10, 8615-8627.	2.8	90
57	Area-Selective Atomic Layer Deposition of Metal Oxides on Noble Metals through Catalytic Oxygen Activation. Chemistry of Materials, 2018, 30, 663-670.	3.2	90
58	On the growth mechanism of a-Si:H. Thin Solid Films, 2001, 383, 154-160.	0.8	89
59	Low-Temperature Plasma-Assisted Atomic-Layer-Deposited SnO ₂ as an Electron Transport Layer in Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 30367-30378.	4.0	88
60	Energy-enhanced atomic layer deposition for more process and precursor versatility. Coordination Chemistry Reviews, 2013, 257, 3254-3270.	9.5	87
61	Deposition of TiN and TaN by Remote Plasma ALD for Cu and Li Diffusion Barrier Applications. Journal of the Electrochemical Society, 2008, 155, G287.	1.3	86
62	Atomic Layer Deposition of Silicon Nitride from Bis(<i>tert</i> -butylamino)silane and N ₂ Plasma. ACS Applied Materials & Interfaces, 2015, 7, 19857-19862.	4.0	86
63	Atomic layer deposition of Pd and Pt nanoparticles for catalysis: on the mechanisms of nanoparticle formation. Nanotechnology, 2016, 27, 034001.	1.3	86
64	Atomic Layer Deposition for Graphene Device Integration. Advanced Materials Interfaces, 2017, 4, 1700232.	1.9	85
65	Tuning Material Properties of Oxides and Nitrides by Substrate Biasing during Plasma-Enhanced Atomic Layer Deposition on Planar and 3D Substrate Topographies. ACS Applied Materials & Interfaces, 2018, 10, 13158-13180.	4.0	85
66	History of atomic layer deposition and its relationship with the American Vacuum Society. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	0.9	84
67	Hydrogen passivation of poly-Si/SiOx contacts for Si solar cells using Al2O3 studied with deuterium. Applied Physics Letters, 2018, 112, .	1.5	80
68	Plasma-assisted atomic layer deposition of nickel oxide as hole transport layer for hybrid perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 12532-12543.	2.7	80
69	Formation of cationic silicon clusters in a remote silane plasma and their contribution to hydrogenated amorphous silicon film growth. Journal of Applied Physics, 1999, 86, 4029-4039.	1.1	78
70	Excellent Si surface passivation by low temperature SiO ₂ using an ultrathin Al ₂ O ₃ capping film. Physica Status Solidi - Rapid Research Letters, 2011, 5, 22-24.	1.2	77
71	Identifying parasitic current pathways in CIGS solar cells by modelling dark <i>J–V</i> response. Progress in Photovoltaics: Research and Applications, 2015, 23, 1516-1525.	4.4	76
72	Synthesis andin situcharacterization of low-resistivity TaNx films by remote plasma atomic layer deposition. Journal of Applied Physics, 2007, 102, 083517.	1.1	75

#	Article	IF	CITATIONS
73	Enhanced Doping Efficiency of Al-Doped ZnO by Atomic Layer Deposition Using Dimethylaluminum Isopropoxide as an Alternative Aluminum Precursor. Chemistry of Materials, 2013, 25, 4619-4622.	3.2	75
74	Ion and Photon Surface Interaction during Remote Plasma ALD of Metal Oxides. Journal of the Electrochemical Society, 2011, 158, G88.	1.3	73
75	Surface passivation of phosphorusâ€diffused n ⁺ â€type emitters by plasmaâ€assisted atomicâ€layer deposited Al ₂ O ₃ . Physica Status Solidi - Rapid Research Letters, 2012, 6, 4-6.	1.2	73
76	Al2O3/TiO2 nano-pattern antireflection coating with ultralow surface recombination. Applied Physics Letters, 2013, 102, .	1.5	73
77	Electron Scattering and Doping Mechanisms in Solid-Phase-Crystallized In ₂ O ₃ :H Prepared by Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2015, 7, 16723-16729.	4.0	72
78	Low-Temperature Plasma-Assisted Atomic Layer Deposition of Silicon Nitride Moisture Permeation Barrier Layers. ACS Applied Materials & Interfaces, 2015, 7, 22525-22532.	4.0	72
79	Highly efficient microcrystalline silicon solar cells deposited from a pure SiH4 flow. Applied Physics Letters, 2005, 87, 263503.	1.5	71
80	Area-Selective Deposition of Ruthenium by Combining Atomic Layer Deposition and Selective Etching. Chemistry of Materials, 2019, 31, 3878-3882.	3.2	71
81	Local deposition of high-purity Pt nanostructures by combining electron beam induced deposition and atomic layer deposition. Journal of Applied Physics, 2010, 107, 116102.	1.1	70
82	Remote Plasma Atomic Layer Deposition of Co3O4 Thin Films. Journal of the Electrochemical Society, 2011, 158, G92.	1.3	70
83	Room-Temperature Atomic Layer Deposition of Platinum. Chemistry of Materials, 2013, 25, 1769-1774.	3.2	70
84	Temperature dependence of the surface roughness evolution during hydrogenated amorphous silicon film growth. Applied Physics Letters, 2003, 82, 865-867.	1.5	68
85	Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al ₂ O ₃ with PO _{<i>x</i>} Interlayer. Nano Letters, 2017, 17, 6287-6294.	4.5	68
86	Effective passivation of Si surfaces by plasma deposited SiOx/a-SiNx:H stacks. Applied Physics Letters, 2011, 98, .	1.5	67
87	Electrical transport and Al doping efficiency in nanoscale ZnO films prepared by atomic layer deposition. Journal of Applied Physics, 2013, 114, .	1.1	67
88	Advanced process technologies: Plasma, direct-write, atmospheric pressure, and roll-to-roll ALD. MRS Bulletin, 2011, 36, 907-913.	1.7	66
89	Plasma-enhanced and thermal atomic layer deposition of Al2O3 using dimethylaluminum isopropoxide, [Al(CH3)2(μ-O <i>i</i> Pr)]2, as an alternative aluminum precursor. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	0.9	66
90	Dielectric Properties of Thermal and Plasma-Assisted Atomic Layer Deposited Al[sub 2]O[sub 3] Thin Films. Journal of the Electrochemical Society, 2011, 158, G21.	1.3	65

#	Article	IF	CITATIONS
91	Energetic ions during plasma-enhanced atomic layer deposition and their role in tailoring material properties. Plasma Sources Science and Technology, 2019, 28, 024002.	1.3	65
92	Uniform Atomic Layer Deposition of Al ₂ O ₃ on Graphene by Reversible Hydrogen Plasma Functionalization. Chemistry of Materials, 2017, 29, 2090-2100.	3.2	64
93	Atomic-layer deposited Nb2O5 as transparent passivating electron contact for c-Si solar cells. Solar Energy Materials and Solar Cells, 2018, 184, 98-104.	3.0	64
94	Film growth precursors in a remote SiH[sub 4] plasma used for high-rate deposition of hydrogenated amorphous silicon. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 2153.	0.9	63
95	Roomâ€Temperature ALD of Metal Oxide Thin Films by Energyâ€Enhanced ALD. Chemical Vapor Deposition, 2013, 19, 125-133.	1.4	63
96	3D negative electrode stacks for integrated all-solid-state lithium-ion microbatteries. Journal of Materials Chemistry, 2010, 20, 3703.	6.7	62
97	Nanopatterning by direct-write atomic layer deposition. Nanoscale, 2012, 4, 4477.	2.8	62
98	Atomic Layer Deposition of High-Purity Palladium Films from Pd(hfac) ₂ and H ₂ and O ₂ Plasmas. Journal of Physical Chemistry C, 2014, 118, 8702-8711.	1.5	62
99	Cavity ring down study of the densities and kinetics of Si and SiH in a remote Ar-H2-SiH4 plasma. Journal of Applied Physics, 2001, 89, 2065-2073.	1.1	61
100	Sub-nanometer dimensions control of core/shell nanoparticles prepared by atomic layer deposition. Nanotechnology, 2015, 26, 094002.	1.3	60
101	Material properties of LPCVD processed n-type polysilicon passivating contacts and its application in PERPoly industrial bifacial solar cells. Energy Procedia, 2017, 124, 635-642.	1.8	60
102	Effect of substrate conditions on the plasma beam deposition of amorphous hydrogenated carbon. Journal of Applied Physics, 1997, 82, 2643-2654.	1.1	59
103	Optical emission spectroscopy as a tool for studying, optimizing, and monitoring plasma-assisted atomic layer deposition processes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 77-87.	0.9	59
104	Area-Selective Atomic Layer Deposition of In ₂ O ₃ :H Using a μ-Plasma Printer for Local Area Activation. Chemistry of Materials, 2017, 29, 921-925.	3.2	59
105	Surface Loss in Ozone-Based Atomic Layer Deposition Processes. Chemistry of Materials, 2011, 23, 2381-2387.	3.2	58
106	Direct-Write Atomic Layer Deposition of High-Quality Pt Nanostructures: Selective Growth Conditions and Seed Layer Requirements. Journal of Physical Chemistry C, 2013, 117, 10788-10798.	1.5	58
107	Redeposition in plasma-assisted atomic layer deposition: Silicon nitride film quality ruled by the gas residence time. Applied Physics Letters, 2015, 107, .	1.5	58
108	High mobility In ₂ O ₃ :H transparent conductive oxides prepared by atomic layer deposition and solid phase crystallization. Physica Status Solidi - Rapid Research Letters, 2014, 8, 987-990.	1.2	57

#	Article	IF	CITATIONS
109	Explorative studies of novel silicon surface passivation materials: Considerations and lessons learned. Solar Energy Materials and Solar Cells, 2018, 188, 182-189.	3.0	57
110	Edge-Site Nanoengineering of WS ₂ by Low-Temperature Plasma-Enhanced Atomic Layer Deposition for Electrocatalytic Hydrogen Evolution. Chemistry of Materials, 2019, 31, 5104-5115.	3.2	57
111	Atomic Layer Deposited Molybdenum Oxide for the Hole-selective Contact of Silicon Solar Cells. Energy Procedia, 2016, 92, 443-449.	1.8	56
112	Ultralow Surface Recombination Velocity in Passivated InGaAs/InP Nanopillars. Nano Letters, 2017, 17, 2627-2633.	4.5	56
113	Atomic Layer Deposition. , 2015, , 1101-1134.		55
114	What is limiting low-temperature atomic layer deposition of Al2O3? A vibrational sum-frequency generation study. Applied Physics Letters, 2016, 108, .	1.5	55
115	Influence of the SiO2 interlayer thickness on the density and polarity of charges in Si/SiO2/Al2O3 stacks as studied by optical second-harmonic generation. Journal of Applied Physics, 2014, 115, .	1.1	54
116	Role of Surface Termination in Atomic Layer Deposition of Silicon Nitride. Journal of Physical Chemistry Letters, 2015, 6, 3610-3614.	2.1	54
117	Composition and bonding structure of plasmaâ€assisted ALD Al ₂ O ₃ films. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 976-979.	0.8	53
118	Comparative study of ALD SiO_2 thin films for optical applications. Optical Materials Express, 2016, 6, 660.	1.6	53
119	On the hydrogenation of Poly-Si passivating contacts by Al2O3 and SiN thin films. Solar Energy Materials and Solar Cells, 2020, 215, 110592.	3.0	53
120	Atomic layer deposition of Ru from CpRu(CO)2Et using O2 gas and O2 plasma. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2011, 29, .	0.9	51
121	Electrocatalytic activity of atomic layer deposited Pt–Ru catalysts onto N-doped carbon nanotubes. Journal of Catalysis, 2014, 311, 481-486.	3.1	51
122	Surface hydride composition of plasma deposited hydrogenated amorphous silicon: in situ infrared study of ion flux and temperature dependence. Surface Science, 2003, 530, 1-16.	0.8	50
123	Quasi-Ice Monolayer on Atomically Smooth AmorphousSiO2at Room Temperature Observed with a High-Finesse Optical Resonator. Physical Review Letters, 2005, 95, 166104.	2.9	50
124	Cavity ring down detection of SiH3 in a remote SiH4 plasma and comparison with model calculations and mass spectrometry. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 467-476.	0.9	49
125	Plasma-assisted atomic layer deposition of TiN/Al2O3 stacks for metal-oxide-semiconductor capacitor applications. Journal of Applied Physics, 2009, 106, .	1.1	49
126	Co3O4 as anode material for thin film micro-batteries prepared by remote plasma atomic layer deposition. Journal of Power Sources, 2012, 203, 72-77.	4.0	49

#	Article	IF	CITATIONS
127	Enhancement of the photocurrent and efficiency of CdTe solar cells suppressing the front contact reflection using a highly-resistive ZnO buffer layer. Solar Energy Materials and Solar Cells, 2019, 191, 78-82.	3.0	49
128	Atomic-Layer-Deposited Transparent Electrodes for Silicon Heterojunction Solar Cells. IEEE Journal of Photovoltaics, 2014, 4, 1387-1396.	1.5	48
129	Atomic layer deposition of B-doped ZnO using triisopropyl borate as the boron precursor and comparison with Al-doped ZnO. Journal of Materials Chemistry C, 2015, 3, 3095-3107.	2.7	48
130	Surface reaction probability during fast deposition of hydrogenated amorphous silicon with a remote silane plasma. Journal of Applied Physics, 2000, 87, 3313-3320.	1.1	47
131	Substrate Biasing during Plasma-Assisted ALD for Crystalline Phase-Control of TiO2 Thin Films. Electrochemical and Solid-State Letters, 2011, 15, G1-G3.	2.2	46
132	Cathode encapsulation of organic light emitting diodes by atomic layer deposited Al2O3 films and Al2O3/a-SiNx:H stacks. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	0.9	46
133	Large area, patterned growth of 2D MoS ₂ and lateral MoS ₂ –WS ₂ heterostructures for nano- and opto-electronic applications. Nanotechnology, 2020, 31, 255603.	1.3	46
134	High-rate plasma-deposited SiO2 films for surface passivation of crystalline silicon. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 1823-1830.	0.9	45
135	Area-Selective Atomic Layer Deposition of Two-Dimensional WS ₂ Nanolayers. , 2020, 2, 511-518.		45
136	High hole drift mobility in a-Si:H deposited at high growth rates for solar cell application. Journal of Non-Crystalline Solids, 2000, 266-269, 380-384.	1.5	44
137	Influence of transparent conductive oxides on passivation of a-Si:H/c-Si heterojunctions as studied by atomic layer deposited Al-doped ZnO. Semiconductor Science and Technology, 2014, 29, 122001.	1.0	44
138	Atomic Layer Deposition of Wet-Etch Resistant Silicon Nitride Using Di(<i>sec</i> -butylamino)silane and N ₂ Plasma on Planar and 3D Substrate Topographies. ACS Applied Materials & Interfaces, 2017, 9, 1858-1869.	4.0	43
139	Hydrogen poor cationic silicon clusters in an expanding argon–hydrogen–silane plasma. Applied Physics Letters, 1998, 72, 2397-2399.	1.5	42
140	Area-Selective Atomic Layer Deposition of TiN Using Aromatic Inhibitor Molecules for Metal/Dielectric Selectivity. Chemistry of Materials, 2020, 32, 7788-7795.	3.2	42
141	Time-resolved cavity ringdown study of the Si and SiH3 surface reaction probability during plasma deposition of a-Si:H at different substrate temperatures. Journal of Applied Physics, 2004, 96, 4094-4106.	1.1	41
142	Revisiting the growth mechanism of atomic layer deposition of Al2O3: A vibrational sum-frequency generation study. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	0.9	41
143	Electrochemical Activation of Atomic Layer-Deposited Cobalt Phosphate Electrocatalysts for Water Oxidation. ACS Catalysis, 2021, 11, 2774-2785.	5.5	41
144	Industrial high-rate (â^1⁄45 nm/s) deposited silicon nitride yielding high-quality bulk and surface passivation under optimum anti-reflection coating conditions. Progress in Photovoltaics: Research and Applications, 2005, 13, 705-712.	4.4	40

#	Arricle study of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi>a</mml:mi>aa`i<mml:mtext></mml:mtext></mml:mrow></mml:math>	IF	CITATIONS
145	mathvariant="normal">Si <mml:mo>:</mml:mo> <mml:mi>c</mml:mi> <mml:mi>c</mml:mi> <mml:mi>c</mml:mi> <mml:mi>c</mml:mi> <mml:mi>athvariant="normal">Si</mml:mi> a^• <mml:mi>c</mml:mi> c athvariant="normal">Sia^•heterointerface formation and epitaxial	<nanl:mi< td=""><td>40</td></nanl:mi<>	40
146	Encapsulation method for atom probe tomography analysis of nanoparticles. Ultramicroscopy, 2015, 159, 420-426.	0.8	40
147	Atomic layer deposition of high-mobility hydrogen-doped zinc oxide. Solar Energy Materials and Solar Cells, 2017, 173, 111-119.	3.0	40
148	Passivating electronâ€selective contacts for silicon solar cells based on an aâ€Si:H/TiO _{<i>x</i>} stack and a low work function metal. Progress in Photovoltaics: Research and Applications, 2018, 26, 835-845.	4.4	40
149	Chemical Analysis of the Interface between Hybrid Organic–Inorganic Perovskite and Atomic Layer Deposited Al ₂ O ₃ . ACS Applied Materials & Interfaces, 2019, 11, 5526-5535.	4.0	40
150	Production Mechanisms of NH and NH ₂ Radicals in N ₂ â^'H ₂ Plasmas. Journal of Physical Chemistry A, 2007, 111, 11460-11472.	1.1	39
151	The atomic hydrogen flux to silicon growth flux ratio during microcrystalline silicon solar cell deposition. Applied Physics Letters, 2008, 93, 111914.	1.5	39
152	Continuous and ultrathin platinum films on graphene using atomic layer deposition: a combined computational and experimental study. Nanoscale, 2016, 8, 19829-19845.	2.8	39
153	Mechanism of Precursor Blocking by Acetylacetone Inhibitor Molecules during Area-Selective Atomic Layer Deposition of SiO ₂ . Chemistry of Materials, 2020, 32, 3335-3345.	3.2	39
154	Temperature and growth-rate effects on the hydrogen incorporation in a-Si:H. Journal of Non-Crystalline Solids, 1998, 227-230, 133-137.	1.5	38
155	High-rate deposition of a-SiNx:H for photovoltaic applications by the expanding thermal plasma. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2002, 20, 1704-1715.	0.9	38
156	Optical second-harmonic generation in thin film systems. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2008, 26, 1519-1537.	0.9	38
157	Plasma-assisted and thermal atomic layer deposition of electrochemically active Li ₂ CO ₃ . RSC Advances, 2017, 7, 41359-41368.	1.7	38
158	Direct and highly sensitive measurement of defect-related absorption in amorphous silicon thin films by cavity ringdown spectroscopy. Applied Physics Letters, 2004, 84, 3079-3081.	1.5	37
159	The effect of ion-surface and ion-bulk interactions during hydrogenated amorphous silicon deposition. Journal of Applied Physics, 2007, 102, 073523.	1.1	37
160	Plasma-assisted atomic layer deposition of TiO2 compact layers for flexible mesostructured perovskite solar cells. Solar Energy, 2017, 150, 447-453.	2.9	37
161	Progress and prospects in nanoscale dry processes: How can we control atomic layer reactions?. Japanese Journal of Applied Physics, 2017, 56, 06HA02.	0.8	36
162	Correlating the silicon surface passivation to the nanostructure of low-temperature a-Si:H after rapid thermal annealing. Journal of Applied Physics, 2017, 122, .	1.1	36

#	Article	IF	CITATIONS
163	Silicon surface passivation by transparent conductive zinc oxide. Journal of Applied Physics, 2019, 125, .	1.1	36
164	Time-resolved cavity ring-down spectroscopic study of the gas phase and surface loss rates of Si and SiH3 plasma radicals. Chemical Physics Letters, 2002, 360, 189-193.	1.2	35
165	Plasma diagnostic study of silicon nitride film growth in a remote Ar–H2–N2–SiH4 plasma: Role of N and SiHn radicals. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 96-106.	0.9	35
166	High surface passivation quality and thermal stability of ALD Al2O3 on wet chemical grown ultra-thin SiO2 on silicon. Energy Procedia, 2011, 8, 654-659.	1.8	35
167	Low-Temperature Phase-Controlled Synthesis of Titanium Di- and Tri-sulfide by Atomic Layer Deposition. Chemistry of Materials, 2019, 31, 9354-9362.	3.2	35
168	(Invited) Aluminum Oxide and Other ALD Materials for Si Surface Passivation. ECS Transactions, 2011, 41, 293-301.	0.3	34
169	Metal-oxide-based hole-selective tunneling contacts for crystalline silicon solar cells. Solar Energy Materials and Solar Cells, 2014, 120, 376-382.	3.0	34
170	Effect of reactor pressure on the conformal coating inside porous substrates by atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	0.9	34
171	Temperature dependence of the surface reactivity of SiH3 radicals and the surface silicon hydride composition during amorphous silicon growth. Surface Science, 2003, 547, L865-L870.	0.8	33
172	Silicon passivation and tunneling contact formation by atomic layer deposited Al ₂ O ₃ /ZnO stacks. Semiconductor Science and Technology, 2013, 28, 082002.	1.0	33
173	Area-selective atomic layer deposition of platinum using photosensitive polyimide. Nanotechnology, 2016, 27, 405302.	1.3	33
174	Film Conformality and Extracted Recombination Probabilities of O Atoms during Plasma-Assisted Atomic Layer Deposition of SiO ₂ , TiO ₂ , Al ₂ O ₃ , and HfO ₂ . Journal of Physical Chemistry C, 2019, 123, 27030-27035.	1.5	33
175	Improvement of hydrogenated amorphous silicon properties with increasing contribution of SiH3 to film growth. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 1027-1029.	0.9	32
176	Transient depletion of source gases during materials processing: a case study on the plasma deposition of microcrystalline silicon. New Journal of Physics, 2007, 9, 280-280.	1.2	32
177	Towards the implementation of atomic layer deposited In2O3:H in silicon heterojunction solar cells. Solar Energy Materials and Solar Cells, 2017, 163, 43-50.	3.0	32
178	Atomic layer deposition of HfO2 using HfCp(NMe2)3 and O2 plasma. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	0.9	32
179	In situprobing of surface hydrides on hydrogenated amorphous silicon using attenuated total reflection infrared spectroscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2002, 20, 781-789.	0.9	31
180	Plasma-assisted atomic layer deposition of TiN monitored byin situspectroscopic ellipsometry. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2005, 23, L5-L8.	0.9	31

#	Article	IF	CITATIONS
181	Microcrystalline silicon deposition: Process stability and process control. Thin Solid Films, 2007, 515, 7455-7459.	0.8	31
182	Optical modeling of plasma-deposited ZnO films: Electron scattering at different length scales. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	0.9	31
183	Low resistivity HfN _x grown by plasma-assisted ALD with external rf substrate biasing. Journal of Materials Chemistry C, 2018, 6, 3917-3926.	2.7	31
184	Atomic Layer Deposition of Cobalt Using H ₂ -, N ₂ -, and NH ₃ -Based Plasmas: On the Role of the Co-reactant. Journal of Physical Chemistry C, 2018, 122, 22519-22529.	1.5	31
185	Nanoscale Encapsulation of Perovskite Nanocrystal Luminescent Films via Plasma-Enhanced SiO ₂ Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2020, 12, 53519-53527.	4.0	31
186	Density and production of NH and NH2 in an Ar–NH3 expanding plasma jet. Journal of Applied Physics, 2005, 98, 093301.	1.1	30
187	The role of plasma induced substrate heating during high rate deposition of microcrystalline silicon solar cells. Thin Solid Films, 2006, 511-512, 562-566.	0.8	30
188	Microcrystalline silicon solar cells with an open-circuit voltage above 600mV. Applied Physics Letters, 2007, 90, 183504.	1.5	30
189	Deposition of highly efficient microcrystalline silicon solar cells under conditions of low H2 dilution: the role of the transient depletion induced incubation layer. Progress in Photovoltaics: Research and Applications, 2007, 15, 291-301.	4.4	30
190	Isotropic Atomic Layer Etching of ZnO Using Acetylacetone and O ₂ Plasma. ACS Applied Materials & Interfaces, 2018, 10, 38588-38595.	4.0	30
191	Sticking probabilities of H2O and Al(CH3)3 during atomic layer deposition of Al2O3 extracted from their impact on film conformality. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	0.9	30
192	Dehydrogenation Reactions during Atomic Layer Deposition of Ru Using O ₂ . Chemistry of Materials, 2012, 24, 3696-3700.	3.2	29
193	Silicon surface passivation by aluminium oxide studied with electron energy loss spectroscopy. Physica Status Solidi - Rapid Research Letters, 2013, 7, 937-941.	1.2	29
194	Remote Plasma ALD of SrTiO[sub 3] Using Cyclopentadienlyl-Based Ti and Sr Precursors. Journal of the Electrochemical Society, 2011, 158, G34.	1.3	28
195	Atomic Layer Deposition of Highly Transparent Platinum Counter Electrodes for Metal/Polymer Flexible Dye‧ensitized Solar Cells. Advanced Energy Materials, 2014, 4, 1300831.	10.2	28
196	Metal–Insulator–Semiconductor Nanowire Network Solar Cells. Nano Letters, 2016, 16, 3689-3695.	4.5	28
197	Dopant Distribution in Atomic Layer Deposited ZnO:Al Films Visualized by Transmission Electron Microscopy and Atom Probe Tomography. Chemistry of Materials, 2018, 30, 1209-1217.	3.2	28
198	Comparison of thermal and plasma-enhanced atomic layer deposition of niobium oxide thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	0.9	28

#	Article	IF	CITATIONS
199	Atomic-layer-deposited Al-doped zinc oxide as a passivating conductive contacting layer for n+-doped surfaces in silicon solar cells. Solar Energy Materials and Solar Cells, 2021, 233, 111386.	3.0	28
200	Surface Reactivity and Plasma Energetics of SiH Radicals during Plasma Deposition of Silicon-Based Materials. Journal of Physical Chemistry B, 2002, 106, 2680-2689.	1.2	27
201	Plasma-assisted atomic layer deposition of Ta2O5 from alkylamide precursor and remote O2 plasma. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2008, 26, 472-480.	0.9	27
202	Mass Spectrometry Study of the Temperature Dependence of Pt Film Growth by Atomic Layer Deposition. ECS Journal of Solid State Science and Technology, 2012, 1, P255-P262.	0.9	27
203	On the solid phase crystallization of In2O3:H transparent conductive oxide films prepared by atomic layer deposition. Journal of Applied Physics, 2016, 120, .	1.1	27
204	<i>In situ</i> spectroscopic ellipsometry during atomic layer deposition of Pt, Ru and Pd. Journal Physics D: Applied Physics, 2016, 49, 115504.	1.3	27
205	Atomic Layer Deposition of Silicon Nitride from Bis(tertiary-butyl-amino)silane and N ₂ Plasma Studied by <i>in Situ</i> Gas Phase and Surface Infrared Spectroscopy. Chemistry of Materials, 2016, 28, 5864-5871.	3.2	27
206	Surface Fluorination of ALD TiO ₂ Electron Transport LayerÂfor Efficient Planar Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1701456.	1.9	27
207	Plasma-enhanced atomic layer deposition of tungsten oxide thin films using (tBuN)2(Me2N)2W and O2 plasma. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	0.9	26
208	Performance and Thermal Stability of an a-Si:H/TiO _{<i>x</i>/Sub>/Yb Stack as an Electron-Selective Contact in Silicon Heterojunction Solar Cells. ACS Applied Energy Materials, 2019, 2, 1393-1404.}	2.5	26
209	Precise ion energy control with tailored waveform biasing for atomic scale processing. Journal of Applied Physics, 2020, 128, .	1.1	26
210	Cavity ring down detection of SiH3 on the broadband à 2A1′ ↕X̃ 2A1 transition in a remote Ar–H2–Sił plasma. Chemical Physics Letters, 2000, 326, 400-406.	14 1.2	25
211	Ammonia adsorption and decomposition on silica supported Rh nanoparticles observed by in situ attenuated total reflection infrared spectroscopy. Applied Surface Science, 2006, 253, 572-580.	3.1	25
212	Er3+ and Si luminescence of atomic layer deposited Er-doped Al2O3 thin films on Si(100). Journal of Applied Physics, 2011, 109, .	1.1	25
213	Hydrogen–argon plasma pre-treatment for improving the anti-corrosion properties of thin Al2O3 films deposited using atomic layer deposition on steel. Thin Solid Films, 2013, 534, 384-393.	0.8	25
214	Hydrogen in a-Si:H Deposited by an Expanding Thermal Plasma: A Temperature, Growth Rate and Isotope Study. Materials Research Society Symposia Proceedings, 1998, 507, 529.	0.1	24
215	First-Principles Investigation of C–H Bond Scission and Formation Reactions in Ethane, Ethene, and Ethyne Adsorbed on Ru(0001). Journal of Physical Chemistry C, 2014, 118, 26683-26694.	1.5	24
216	"Zero-charge―SiO2/Al2O3 stacks for the simultaneous passivation of n+ and p+ doped silicon surfaces by atomic layer deposition. Solar Energy Materials and Solar Cells, 2015, 143, 450-456.	3.0	24

#	Article	IF	CITATIONS
217	Rear-emitter silicon heterojunction solar cells with atomic layer deposited ZnO:Al serving as an alternative transparent conducting oxide to In2O3:Sn. Solar Energy Materials and Solar Cells, 2019, 200, 109953.	3.0	24
218	Bulk passivation of multicrystalline silicon solar cells induced by high-rate-deposited (> 1 nm/s) silicon nitride films. Progress in Photovoltaics: Research and Applications, 2003, 11, 125-130.	4.4	23
219	Expanding thermal plasma for low-k dielectrics: engineering the film chemistry by means of specific dissociation paths in the plasma. Materials Science in Semiconductor Processing, 2004, 7, 283-288.	1.9	23
220	Surface-diffusion-controlled incorporation of nanosized voids during hydrogenated amorphous silicon film growth. Applied Physics Letters, 2005, 86, 041909.	1.5	23
221	Optical properties of Y2O3 thin films doped with spatially controlled Er3+ by atomic layer deposition. Journal of Applied Physics, 2007, 101, .	1.1	23
222	[Zr(NEtMe) ₂ (guan-NEtMe) ₂] as a Novel Atomic Layer Deposition Precursor: ZrO ₂ Film Growth and Mechanistic Studies. Chemistry of Materials, 2013, 25, 3088-3095.	3.2	23
223	Plasma-Assisted Atomic Layer Deposition of SrTiO ₃ : Stoichiometry and Crystallinity Studied by Spectroscopic Ellipsometry. ECS Journal of Solid State Science and Technology, 2013, 2, N15-N22.	0.9	23
224	Spectroscopic second harmonic generation measured on plasma-deposited hydrogenated amorphous silicon thin films. Applied Physics Letters, 2004, 85, 4049-4051.	1.5	22
225	P-111: A Thin Film Encapsulation Stack for PLED and OLED Displays. Digest of Technical Papers SID International Symposium, 2004, 35, 695.	0.1	22
226	N, NH, and NH2 radical densities in a remote Ar–NH3–SiH4 plasma and their role in silicon nitride deposition. Journal of Applied Physics, 2006, 100, 093303.	1.1	22
227	Remote Plasma Atomic Layer Deposition of Thin Films of Electrochemically Active LiCoO ₂ . ECS Transactions, 2011, 41, 321-330.	0.3	22
228	Reaction mechanisms of atomic layer deposition of TaNx from Ta(NMe2)5 precursor and H2-based plasmas. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, 01A101.	0.9	22
229	On the role of micro-porosity in affecting the environmental stability of atomic/molecular layer deposited (ZnO) _a (Zn–O–C ₆ H ₄ –O) _b films. Dalton Transactions, 2019, 48, 3496-3505.	1.6	22
230	Effect of an electric field during the deposition of silicon dioxide thin films by plasma enhanced atomic layer deposition: an experimental and computational study. Nanoscale, 2020, 12, 2089-2102.	2.8	22
231	Probing the Origin and Suppression of Vertically Oriented Nanostructures of 2D WS ₂ Layers. ACS Applied Materials & Interfaces, 2020, 12, 3873-3885.	4.0	22
232	Atomic Layer Deposition of Al-Doped MoS ₂ : Synthesizing a p-type 2D Semiconductor with Tunable Carrier Density. ACS Applied Nano Materials, 2020, 3, 10200-10208.	2.4	22
233	Opportunities for Plasma-Assisted Atomic Layer Deposition. ECS Transactions, 2007, 3, 183-190.	0.3	21
234	The effect of low frequency pulse-shaped substrate bias on the remote plasma deposition of a-Si : H thin films. Plasma Sources Science and Technology, 2010, 19, 015012.	1.3	21

#	Article	IF	CITATIONS
235	The competing roles of i-ZnO in Cu(In,Ga)Se2 solar cells. Solar Energy Materials and Solar Cells, 2016, 157, 798-807.	3.0	21
236	Atomic Layer Deposition of In ₂ O ₃ :H from InCp and H ₂ O/O ₂ : Microstructure and Isotope Labeling Studies. ACS Applied Materials & Interfaces, 2017, 9, 592-601.	4.0	21
237	Effective passivation of silicon surfaces by ultrathin atomic-layer deposited niobium oxide. Applied Physics Letters, 2018, 112, .	1.5	21
238	Surface passivation of germanium by atomic layer deposited Al2O3 nanolayers. Journal of Materials Research, 2021, 36, 571-581.	1.2	21
239	Formation of large positive silicon-cluster ions in a remote silane plasma. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 1531-1535.	0.9	20
240	Probing hydrogenated amorphous silicon surface states by spectroscopic and real-time second-harmonic generation. Physical Review B, 2006, 73, .	1.1	20
241	Surface Infrared Spectroscopy during Low Temperature Growth of Supported Pt Nanoparticles by Atomic Layer Deposition. Journal of Physical Chemistry C, 2016, 120, 750-755.	1.5	20
242	Absolute in situ measurement of surface dangling bonds during a-Si:H growth. Applied Physics Letters, 2007, 90, 161918.	1.5	19
243	a-Si:Hâ^•c-Si heterointerface formation and epitaxial growth studied by real time optical probes. Applied Physics Letters, 2007, 90, 202108.	1.5	19
244	Plasmaâ€enhanced Chemical Vapor Deposition of Aluminum Oxide Using Ultrashort Precursor Injection Pulses. Plasma Processes and Polymers, 2012, 9, 761-771.	1.6	19
245	Ion Bombardment during Plasma-Assisted Atomic Layer Deposition. ECS Transactions, 2013, 50, 23-34.	0.3	19
246	TiO ₂ thin film patterns prepared by chemical vapor deposition and atomic layer deposition using an atmospheric pressure microplasma printer. Plasma Processes and Polymers, 2019, 16, 1900127.	1.6	19
247	Atomic layer deposition of cobalt phosphate thin films for the oxygen evolution reaction. Electrochemistry Communications, 2019, 98, 73-77.	2.3	19
248	Time-of-flight photocurrents in expanding-thermal-plasma-deposited a-Si:H. Journal of Non-Crystalline Solids, 2002, 299-302, 420-424.	1.5	18
249	Absence of the enhanced intra-4f transition cross section at 1.5μm of Er3+ in Si-rich SiO2. Applied Physics Letters, 2005, 86, 241109.	1.5	18
250	Probing the phase composition of silicon films in situ by etch product detection. Applied Physics Letters, 2007, 91, 161902.	1.5	18
251	Silicon surface passivation by hot-wire CVD Si thin films studied by in situ surface spectroscopy. Thin Solid Films, 2009, 517, 3456-3460.	0.8	18
252	Synergy Between Plasmaâ€Assisted ALD and Rollâ€ŧoâ€Roll Atmospheric Pressure PE VD Processing of Moisture Barrier Films on Polymers. Plasma Processes and Polymers, 2016, 13, 311-315.	1.6	18

#	Article	IF	CITATIONS
253	Synthesis of single-walled carbon nanotubes from atomic-layer-deposited Co3O4 and Co3O4/Fe2O3 catalyst films. Carbon, 2017, 121, 389-398.	5.4	18
254	Surface passivation of <i>n</i> -type doped black silicon by atomic-layer-deposited SiO2/Al2O3 stacks. Applied Physics Letters, 2017, 110, .	1.5	18
255	Initial stage of atomic layer deposition of 2D-MoS ₂ on a SiO ₂ surface: a DFT study. Physical Chemistry Chemical Physics, 2018, 20, 16861-16875.	1.3	18
256	Investigation of crystalline silicon surface passivation by positively charged POx/Al2O3 stacks. Solar Energy Materials and Solar Cells, 2018, 185, 385-391.	3.0	18
257	A model for the deposition of a-C:H using an expanding thermal arc. Surface and Coatings Technology, 1998, 98, 1584-1589.	2.2	17
258	In Situ Probing and Atomistic Simulation of a-Si:H Plasma Deposition. Materials Research Society Symposia Proceedings, 2001, 664, 111.	0.1	17
259	Thermal and Plasma Enhanced Atomic Layer Deposition of Al[sub 2]O[sub 3] on GaAs Substrates. Journal of the Electrochemical Society, 2009, 156, H255.	1.3	17
260	Concepts and prospects of passivating contacts for crystalline silicon solar cells. , 2015, , .		17
261	Plasma-assisted atomic layer deposition of conformal Pt films in high aspect ratio trenches. Journal of Chemical Physics, 2017, 146, 052818.	1.2	17
262	Atomic layer deposition of highly dispersed Pt nanoparticles on a high surface area electrode backbone for electrochemical promotion of catalysis. Electrochemistry Communications, 2017, 84, 40-44.	2.3	17
263	Remote Silane Plasma Chemistry Effects and their Correlation with a-Si:H Film Properties. Materials Research Society Symposia Proceedings, 1999, 557, 25.	0.1	16
264	High rate (â^¼3 nm/s) deposition of dense silicon nitride films at low substrate temperatures (<150 °C) using the expanding thermal plasma and substrate biasing. Thin Solid Films, 2005, 484, 46-53.	0.8	16
265	SiHx film growth precursors during high-rate nanocrystalline silicon deposition. Journal of Applied Physics, 2006, 99, 076110.	1.1	16
266	Molecular dynamics simulations of Ar+ bombardment of Si with comparison to experiment. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 1529-1533.	0.9	16
267	Plasma-enhanced atomic layer deposition of titania on alumina for its potential use as a hydrogen-selective membrane. Journal of Membrane Science, 2011, 378, 438-443.	4.1	16
268	Cyclic Etch/Passivation-Deposition as an All-Spatial Concept toward High-Rate Room Temperature Atomic Layer Etching. ECS Journal of Solid State Science and Technology, 2015, 4, N5067-N5076.	0.9	16
269	PO <i>x</i> /Al2O3 stacks: Highly effective surface passivation of crystalline silicon with a large positive fixed charge. Applied Physics Letters, 2018, 112, .	1.5	16
270	Initial Growth Study of Atomic-Layer Deposition of Al ₂ O ₃ by Vibrational Sum-Frequency Generation. Langmuir, 2019, 35, 10374-10382.	1.6	16

#	Article	IF	CITATIONS
271	Impact of Ions on Film Conformality and Crystallinity during Plasma-Assisted Atomic Layer Deposition of TiO ₂ . Chemistry of Materials, 2021, 33, 5002-5009.	3.2	16
272	Plasma and surface chemistry effects during high rate deposition of hydrogenated amorphous silicon. Plasma Physics and Controlled Fusion, 1999, 41, A365-A378.	0.9	15
273	Substrate temperature dependence of the roughness evolution of HWCVD a-Si:H studied by real-time spectroscopic ellipsometry. Thin Solid Films, 2006, 501, 88-91.	0.8	15
274	Atomic-layer-deposited aluminum oxide for the surface passivation of high-efficiency silicon solar cells. Conference Record of the IEEE Photovoltaic Specialists Conference, 2008, , .	0.0	15
275	Resistive Intrinsic ZnO Films Deposited by Ultrafast Spatial ALD for PV Applications. IEEE Journal of Photovoltaics, 2015, 5, 1462-1469.	1.5	15
276	Graphene devices with bottom-up contacts by area-selective atomic layer deposition. 2D Materials, 2017, 4, 025046.	2.0	15
277	Atomic layer deposition of aluminum fluoride using Al(CH3)3 and SF6 plasma. Applied Physics Letters, 2017, 111, .	1.5	15
278	Evidence for low-energy ions influencing plasma-assisted atomic layer deposition of SiO2: Impact on the growth per cycle and wet etch rate. Applied Physics Letters, 2020, 117, .	1.5	15
279	Isotropic plasma atomic layer etching of Al2O3 using a fluorine containing plasma and Al(CH3)3. Applied Physics Letters, 2020, 117, .	1.5	15
280	Improved Passivation of n-Type Poly-Si Based Passivating Contacts by the Application of Hydrogen-Rich Transparent Conductive Oxides. IEEE Journal of Photovoltaics, 2020, 10, 986-991.	1.5	15
281	Insight into the removal and reapplication of small inhibitor molecules during area-selective atomic layer deposition of SiO2. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	0.9	15
282	Relation between Reactive Surface Sites and Precursor Choice for Area-Selective Atomic Layer Deposition Using Small Molecule Inhibitors. Journal of Physical Chemistry C, 2022, 126, 4845-4853.	1.5	15
283	Amorphous silicon layer characteristics during 70–2000eV Ar+-ion bombardment of Si(100). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 1933-1940.	0.9	14
284	Downstream ion and radical densities in an Ar–NH3plasma generated by the expanding thermal plasma technique. Plasma Sources Science and Technology, 2006, 15, 546-555.	1.3	14
285	Analysis of blister formation in spatial ALD Al <inf>2</inf> O <inf>3</inf> for surface passivation. , 2012, , .		14
286	Passivation of n\$^{+}\$-Type Si Surfaces by Low Temperature Processed SiO\$_{2}\$/Al\$_{2}\$O\$_{3}\$ Stacks. IEEE Journal of Photovoltaics, 2013, 3, 925-929.	1.5	14
287	Quantification of pn-Junction Recombination in Interdigitated Back-Contact Crystalline Silicon Solar Cells. IEEE Journal of Photovoltaics, 2017, 7, 1176-1183.	1.5	14
288	Excellent surface passivation of germanium by a-Si:H/Al2O3 stacks. Journal of Applied Physics, 2021, 130,	1.1	14

#	Article	IF	CITATIONS
289	Hydrogen Incorporation During Deposition of a-Si:H From an Intense Source of SiH ₃ . Materials Research Society Symposia Proceedings, 1997, 467, 621.	0.1	13
290	Bis(cyclopentadienyl) zirconium(IV) amides as possible precursors for low pressure CVD and plasma-enhanced ALD. Inorganica Chimica Acta, 2010, 363, 1077-1083.	1.2	13
291	The effect of residual gas scattering on Ga ion beam patterning of graphene. Applied Physics Letters, 2015, 107, .	1.5	13
292	(Invited) Area-Selective Atomic Layer Deposition: Role of Surface Chemistry. ECS Transactions, 2017, 80, 39-48.	0.3	13
293	Characterization of nano-porosity in molecular layer deposited films. Dalton Transactions, 2018, 47, 7649-7655.	1.6	13
294	Enhancing the Electrocatalytic Activity of Redox Stable Perovskite Fuel Electrodes in Solid Oxide Cells by Atomic Layer-Deposited Pt Nanoparticles. ACS Sustainable Chemistry and Engineering, 2020, 8, 12646-12654.	3.2	13
295	Plasma-Assisted ALD of Highly Conductive HfNx: On the Effect of Energetic Ions on Film Microstructure. Plasma Chemistry and Plasma Processing, 2020, 40, 697-712.	1.1	13
296	The growth kinetics of silicon nitride deposited from the SiH4–N2 reactant mixture in a remote plasma. Journal of Non-Crystalline Solids, 2004, 338-340, 37-41.	1.5	12
297	Hidden parameters in the plasma deposition of microcrystalline silicon solar cells. Journal of Materials Research, 2007, 22, 1767-1774.	1.2	12
298	Atomic Layer Deposited ZnO: B As Transparent Conductive Oxide for Increased Short Circuit Current Density in Silicon Heterojunction Solar Cells. Energy Procedia, 2016, 92, 624-632.	1.8	12
299	Optical and electrical properties of H2 plasma-treated ZnO films prepared by atomic layer deposition using supercycles. Materials Science in Semiconductor Processing, 2018, 84, 91-100.	1.9	12
300	Atomic layer deposition of Nb-doped TiO2: Dopant incorporation and effect of annealing. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	0.9	12
301	Initial growth and properties of atomic layer deposited TiN films studied byin situ spectroscopic ellipsometry. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 3958-3962.	0.8	11
302	Spectroscopic second-harmonic generation duringAr+-ion bombardment of Si(100). Physical Review B, 2006, 74, .	1.1	11
303	Attenuated total reflection infrared spectroscopy for studying adsorbates on planar model catalysts: CO adsorption on silica supported Rh nanoparticles. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 296-304.	0.9	11
304	Real time spectroscopic ellipsometry on ultrathin (<50Ã) hydrogenated amorphous silicon films on Si(100) and GaAs(100). Journal of Applied Physics, 2007, 101, 123529.	1.1	11
305	(Invited) All-Solid-State Batteries: A Challenging Route towards 3D Integration. ECS Transactions, 2010, 33, 213-222.	0.3	11
306	Catalytic Combustion Reactions During Atomic Layer Deposition of Ru Studied Using ¹⁸ O ₂ Isotope Labeling. Journal of Physical Chemistry C, 2013, 117, 21320-21330.	1.5	11

#	Article	IF	CITATIONS
307	Crystallization Study by Transmission Electron Microscopy of SrTiO ₃ Thin Films Prepared by Plasma-Assisted ALD. ECS Journal of Solid State Science and Technology, 2013, 2, N120-N124.	0.9	11
308	Plasmaâ€Assisted Atomic Layer Deposition of PtO _{<i>x</i>} from (MeCp)PtMe ₃ and O ₂ Plasma. Chemical Vapor Deposition, 2014, 20, 258-268.	1.4	11
309	Surface Decoration of <i>ïµ</i> â€Fe ₂ O ₃ Nanorods by CuO Via a Two‣tep CVD/Sputtering Approach ** . Chemical Vapor Deposition, 2014, 20, 313-319.	1.4	11
310	Impact of composition and crystallization behavior of atomic layer deposited strontium titanate films on the resistive switching of Pt/STO/TiN devices. Journal of Applied Physics, 2014, 116, 064503.	1.1	11
311	Resist-free fabricated carbon nanotube field-effect transistors with high-quality atomic-layer-deposited platinum contacts. Applied Physics Letters, 2017, 110, .	1.5	11
312	Infrared and optical emission spectroscopy study of atmospheric pressure plasma-enhanced spatial ALD of Al2O3. Applied Physics Letters, 2019, 115, 083101.	1.5	11
313	On the effect of atomic layer deposited Al ₂ O ₃ on the environmental degradation of hybrid perovskite probed by positron annihilation spectroscopy. Journal of Materials Chemistry C, 2019, 7, 5275-5284.	2.7	11
314	Hydrogenated amorphous silicon based surface passivation of câ€ s i at high deposition temperature and rate. Physica Status Solidi - Rapid Research Letters, 2010, 4, 206-208.	1.2	10
315	Surface Passivation and Simulated Performance of Solar Cells With Al \$_{f 2}\$O\$_{f 3}\$/SiN \$_{m x}\$ Rear Dielectric Stacks. IEEE Journal of Photovoltaics, 2013, 3, 970-975.	1.5	10
316	Influence of stoichiometry on the performance of MIM capacitors from plasmaâ€assisted ALD Sr _{<i>x</i>} Ti _{<i>y</i>} O _{<i>z</i>} films. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 389-396.	0.8	10
317	Strategies to facilitate the formation of free standing MoS2 nanolayers on SiO2 surface by atomic layer deposition: A DFT study. APL Materials, 2018, 6, 111107.	2.2	10
318	The chemistry and energetics of the interface between metal halide perovskite and atomic layer deposited metal oxides. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	0.9	10
319	The Role of H in the Growth Mechanism of PECVD a-Si:H. Materials Research Society Symposia Proceedings, 1999, 557, 13.	0.1	9
320	Optical spectroscopy of the density of gap states in ETP-deposited a-Si:H. Journal of Non-Crystalline Solids, 2004, 338-340, 244-248.	1.5	9
321	High-rate deposition of nanocrystalline silicon using the expanding thermal plasma technique. Journal of Non-Crystalline Solids, 2006, 352, 915-918.	1.5	9
322	High-Rate Anisotropic Silicon Etching with the Expanding Thermal Plasma Technique. Electrochemical and Solid-State Letters, 2007, 10, H309.	2.2	9
323	Deposition temperature dependence of material and Si surface passivation properties of O3-based atomic layer deposited Al2O3-based films and stacks. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, .	0.9	9
324	Silicon heterojunction solar cell passivation in combination with nanocrystalline silicon oxide emitters. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1932-1936.	0.8	9

#	Article	IF	CITATIONS
325	The influence of non-stoichiometry on the switching kinetics of strontium-titanate ReRAM devices. Journal of Applied Physics, 2016, 120, .	1.1	9
326	Plasma-assisted atomic layer deposition of HfNx: Tailoring the film properties by the plasma gas composition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	0.9	9
327	Pt–Graphene Contacts Fabricated by Plasma Functionalization and Atomic Layer Deposition. Advanced Materials Interfaces, 2018, 5, 1800268.	1.9	9
328	Transition in layer structure of atomic/molecular layer deposited ZnO-zincone multilayers. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	0.9	9
329	Metastable Refractive Index Manipulation in Hydrogenated Amorphous Silicon for Reconfigurable Photonics. Advanced Optical Materials, 2020, 8, 1901680.	3.6	9
330	Atomic layer deposition and selective etching of ruthenium for area-selective deposition: Temperature dependence and supercycle design. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	0.9	9
331	Atmospheric-Pressure Plasma-Enhanced Spatial ALD of SiO2 Studied by Gas-Phase Infrared and Optical Emission Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 24945-24957.	1.5	9
332	Controlling transition metal atomic ordering in two-dimensional Mo _{1â^'x} W _x S ₂ alloys. 2D Materials, 2022, 9, 025016.	2.0	9
333	Thickness and Morphology Dependent Electrical Properties of ALDâ€5ynthesized MoS ₂ FETs. Advanced Electronic Materials, 2022, 8, .	2.6	9
334	Firing stability of atomic layer deposited Al <inf>2</inf> O <inf>3</inf> for c-Si surface passivation. , 2009, , .		8
335	Plasma-Enhanced ALD of TiO ₂ Using a Novel Cyclopentadienyl Alkylamido Precursor [Ti(Cp ^{Me})(NMe ₂) ₃] and O ₂ Plasma. ECS Transactions, 2010, 33, 385-393.	0.3	8
336	Amorphization of Si(100) by Ar+-ion bombardment studied with spectroscopic and time-resolved second-harmonic generation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 293-301.	0.9	8
337	Plasma–surface interaction during low pressure microcrystalline silicon thin film growth. Journal Physics D: Applied Physics, 2014, 47, 224003.	1.3	8
338	Interaction between O2 and ZnO films probed by time-dependent second-harmonic generation. Applied Physics Letters, 2014, 104, .	1.5	8
339	Variational method for the minimization of entropy generation in solar cells. Journal of Applied Physics, 2015, 117, .	1.1	8
340	Simultaneous scanning tunneling microscopy and synchrotron X-ray measurements in a gas environment. Ultramicroscopy, 2017, 182, 233-242.	0.8	8
341	Mass Spectrometry Study of Li2CO3 Film Growth by Thermal and Plasma-Assisted Atomic Layer Deposition. Journal of Physical Chemistry C, 2019, 123, 4109-4115.	1.5	8
342	Atomic layer deposition of ruthenium using an ABC-type process: Role of oxygen exposure during nucleation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	0.9	8

#	Article	IF	CITATIONS
343	Plasma-Enhanced Atomic Layer Deposition of Cobalt and Cobalt Nitride: What Controls the Incorporation of Nitrogen?. Journal of Physical Chemistry C, 2020, 124, 22046-22054.	1.5	8
344	Oxygen Recombination Probability Data for Plasma-Assisted Atomic Layer Deposition of SiO ₂ and TiO ₂ . Journal of Physical Chemistry C, 2021, 125, 8244-8252.	1.5	8
345	On the Contact Optimization of ALD-Based MoS ₂ FETs: Correlation of Processing Conditions and Interface Chemistry with Device Electrical Performance. ACS Applied Electronic Materials, 2021, 3, 3185-3199.	2.0	8
346	Conformal Growth of Nanometer-Thick Transition Metal Dichalcogenide TiS <i>_x</i> -NbS <i>_x</i> Heterostructures over 3D Substrates by Atomic Layer Deposition: Implications for Device Fabrication. ACS Applied Nano Materials, 2021, 4, 514-521.	2.4	8
347	Material properties and growth process of microcrystalline silicon with growth rates in excess of 1 nm/s. Materials Research Society Symposia Proceedings, 2001, 664, 421.	0.1	7
348	Hot-wire deposition of a-Si:H thin films on wafer substrates studied by real-time spectroscopic ellipsometry and infrared spectroscopy. Thin Solid Films, 2008, 516, 511-516.	0.8	7
349	Comparison between aluminum oxide surface passivation films deposited with thermal ALD, plasma ALD and PECVD. , 2010, , .		7
350	A new concept for spatially divided Deep Reactive Ion Etching with ALD-based passivation. IOP Conference Series: Materials Science and Engineering, 2012, 41, 012001.	0.3	7
351	Expanding Thermal Plasma Chemical Vapour Deposition of ZnO:Al Layers for CIGS Solar Cells. International Journal of Photoenergy, 2014, 2014, 1-9.	1.4	7
352	Boron-Doped Silicon Surfaces From B\$_{f 2}\$H \$_{f 6}\$ Passivated by ALD Al\$_{f 2}\$O\$_{f 3}\$ for Solar Cells. IEEE Journal of Photovoltaics, 2015, 5, 1310-1318.	1.5	7
353	Dynamic Ellipsometric Porosimetry Investigation of Permeation Pathways in Moisture Barrier Layers on Polymers. ACS Applied Materials & Interfaces, 2016, 8, 25005-25009.	4.0	7
354	Atomic Layer Deposition of Aluminum Phosphate Using AlMe ₃ , PO(OMe) ₃ , and O ₂ Plasma: Film Growth and Surface Reactions. Journal of Physical Chemistry C, 2020, 124, 5495-5505.	1.5	7
355	Excellent Passivation of n â€Type Silicon Surfaces Enabled by Pulsedâ€Flow Plasmaâ€Enhanced Chemical Vapor Deposition of Phosphorus Oxide Capped by Aluminum Oxide. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000399.	1.2	7
356	Atomic insights into the oxygen incorporation in atomic layer deposited conductive nitrides and its mitigation by energetic ions. Nanoscale, 2021, 13, 10092-10099.	2.8	7
357	Surface Chemistry during Atomic Layer Deposition of Pt Studied with Vibrational Sum-Frequency Generation. Journal of Physical Chemistry C, 2022, 126, 2463-2474.	1.5	7
358	External rf substrate biasing during a-Si:H film growth using the expanding thermal plasma technique. Materials Research Society Symposia Proceedings, 2004, 808, 479.	0.1	6
359	Crystalline silicon surface passivation by the negative-charge-dielectric Al <inf>2</inf> O <inf>3</inf> . Conference Record of the IEEE Photovoltaic Specialists Conference, 2008, , .	0.0	6
360	The ALU ⁺ concept: N-type silicon solar cells with surface-passivated screen-printed aluminum-alloyed rear emitter. , 2009, , .		6

#	Article	IF	CITATIONS
361	Remote Plasma Atomic Layer Deposition of Co3O4 Thin Films. ECS Transactions, 2009, 25, 39-47.	0.3	6
362	Plasma-Assisted Atomic Layer Deposition of SrTiO3: Stoichiometry and Crystallinity Study by Spectroscopic Ellipsometry. ECS Transactions, 2011, 41, 63-72.	0.3	6
363	Impact of the Deposition and Annealing Temperature on the Silicon Surface Passivation of ALD Al2O3 Films. Energy Procedia, 2012, 27, 396-401.	1.8	6
364	Dielectric Material Options for Integrated Capacitors. ECS Journal of Solid State Science and Technology, 2014, 3, N120-N125.	0.9	6
365	High Resolution Sheet Resistance Mapping to Unveil Edge Effects in Industrial IBC Solar Cells. Energy Procedia, 2016, 92, 218-224.	1.8	6
366	On the Growth, Percolation and Wetting of Silver Thin Films Grown by Atmospheric-Plasma Enhanced Spatial Atomic Layer Deposition. ECS Transactions, 2016, 75, 129-142.	0.3	6
367	Self-aligned local contact opening and n+ diffusion by single-step laser doping from POx/Al2O3 passivation stacks. Solar Energy Materials and Solar Cells, 2020, 217, 110717.	3.0	6
368	Atomic layer deposition of LiF using LiN(SiMe3)2 and SF6 plasma. Physical Chemistry Chemical Physics, 2021, 23, 9304-9314.	1.3	6
369	PO _{<i>x</i>} /Al ₂ O ₃ Stacks for c-Si Surface Passivation: Material and Interface Properties. ACS Applied Electronic Materials, 2021, 3, 4337-4347.	2.0	6
370	The a-Si:H growth mechanism and the role of H abstraction from the surface by SiH3 radicals via an Eley–Rideal mechanism. Journal of Non-Crystalline Solids, 2004, 338-340, 27-31.	1.5	5
371	Plasma-surface interaction and surface diffusion during silicon-based thin-film growth. IEEE Transactions on Plasma Science, 2005, 33, 234-235.	0.6	5
372	On the H-exchange of ammonia and silica hydroxyls in the presence of Rh nanoparticles. Applied Surface Science, 2007, 253, 3600-3607.	3.1	5
373	Ion-radical synergy in HfO2 etching studied with a XeF2/Ar+ beam setup. Journal of Applied Physics, 2008, 103, 083304.	1.1	5
374	Corona charging and optical second-harmonic generation studies of the field-effect passivation of c-SI by Al <inf>2</inf> 0 <inf>3</inf> films. , 2010, , .		5
375	(Invited) Catalytic Surface Reactions during Nucleation and Growth of Atomic Layer Deposition of Noble Metals: A Case Study for Platinum. ECS Transactions, 2013, 58, 183-193.	0.3	5
376	Atomic hydrogen induced defect kinetics in amorphous silicon. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, 05C307.	0.9	5
377	Atomic layer deposition of cobalt phosphate from cobaltocene, trimethylphosphate, and O2 plasma. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	0.9	5
378	Innovative remote plasma source for atomic layer deposition for GaN devices. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	0.9	5

#	Article	IF	CITATIONS
379	Passivation Enhancement of Poly-Si Carrier-Selective Contacts by Applying ALD Al ₂ O ₃ Capping Layers. IEEE Journal of Photovoltaics, 2022, 12, 259-266.	1.5	5
380	Plasma-Enhanced Atomic Layer Deposition of HfO ₂ with Substrate Biasing: Thin Films for High-Reflective Mirrors. ACS Applied Materials & Interfaces, 2022, 14, 14677-14692.	4.0	5
381	Temporal and spatial atomic layer deposition of Al-doped zinc oxide as a passivating conductive contact for silicon solar cells. Solar Energy Materials and Solar Cells, 2022, 245, 111869.	3.0	5
382	High-rate deposition of a-SiN <i>_x</i> :H films for photovoltaic applications. Materials Research Society Symposia Proceedings, 2001, 664, 861.	0.1	4
383	On combining surface and bulk passivation of SiN/sub x/:H layers for mc-Si solar cells. , 0, , .		4
384	New ultrahigh vacuum setup and advanced diagnostic techniques for studying a-Si:H film growth by radical beams. Materials Research Society Symposia Proceedings, 2004, 808, 491.	0.1	4
385	Analysis of a-Si:H subgap absorption spectra obtained from absolute cavity ringdown absorption spectroscopy using an empirical DOS model. Journal of Non-Crystalline Solids, 2004, 338-340, 408-411.	1.5	4
386	Plasma-assisted Atomic Layer Deposition of TiN Films at low Deposition Temperature for High-aspect Ratio Applications. Materials Research Society Symposia Proceedings, 2005, 863, B6.4-1.	0.1	4
387	Surface Passivation by Al ₂ O ₃ and <i>a</i> -SiN _x : H Films Deposited on Wet-Chemically Conditioned Si Surfaces. ECS Journal of Solid State Science and Technology, 2012, 1, P320-P325.	0.9	4
388	Room Temperature Sensing of O ₂ and CO by Atomic Layer Deposition Prepared ZnO Films Coated with Pt Nanoparticles. ECS Transactions, 2013, 58, 203-214.	0.3	4
389	Second-harmonic intensity and phase spectroscopy as a sensitive method to probe the space-charge field in Si(100) covered with charged dielectrics. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, 021103.	0.9	4
390	Atomic-layer deposited passivation schemes for c-Si solar cells. , 2017, , .		4
391	Data on dopant characteristics and band alignment of CdTe cells with and without a ZnO highly-resistive-transparent buffer layer. Data in Brief, 2019, 22, 218-221.	0.5	4
392	Synthesis of edge-enriched WS2 on high surface area WS2 framework by atomic layer deposition for electrocatalytic hydrogen evolution reaction. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	0.9	4
393	Reaction Mechanisms during Atomic Layer Deposition of AlF ₃ Using Al(CH ₃) ₃ and SF ₆ Plasma. Journal of Physical Chemistry C, 2021, 125, 3913-3923.	1.5	4
394	HIGH-RATE SILICON NITRIDE DEPOSITION FOR PHOTOVOLTAICS: FROM FUNDAMENTALS TO INDUSTRIAL APPLICATION. High Temperature Material Processes, 2005, 9, 141-157.	0.2	4
395	Extracting surface recombination parameters of germanium–dielectric interfaces by corona-lifetime experiments. Journal of Applied Physics, 2022, 131, .	1.1	4
396	Relation between Growth Precursors and Film Properties for Plasma Deposition of a-Si:H at Rates up to 100 Ã/s. Materials Research Society Symposia Proceedings, 2000, 609, 421.	0.1	3

#	Article	IF	CITATIONS
397	Modeling of the formation of cationic silicon clusters in a remote Ar/H2/SiH4 plasma. Journal of Applied Physics, 2000, 88, 537-543.	1.1	3
398	The a-Si:H Growth Mechanism: Temperature Study of the SiH3 Surface Reactivity and the Surface Silicon Hydride Composition During Film Growth. Materials Research Society Symposia Proceedings, 2003, 762, 931.	0.1	3
399	Good Surface Passivation of C-SI by High Rate Plasma Deposited Silicon Oxide. , 2006, , .		3
400	A New Concept for Spatially-Divided Reactive Ion Etching with ALD-Based Passivation. ECS Transactions, 2013, 50, 73-82.	0.3	3
401	ALD of SrTiO ₃ and Pt for Pt/SrTiO ₃ /Pt MIM Structures: Growth and Crystallization Study. ECS Transactions, 2013, 58, 153-162.	0.3	3
402	Opportunities of Atomic Layer Deposition for Perovskite Solar Cells. ECS Transactions, 2015, 69, 15-22.	0.3	3
403	Atomic-layer deposited passivation schemes for c-Si solar cells. , 2016, , .		3
404	Nucleation of microcrystalline silicon: on the effect of the substrate surface nature and nano-imprint topography. Journal Physics D: Applied Physics, 2016, 49, 055205.	1.3	3
405	Lightâ€Induced Reversible Optical Properties of Hydrogenated Amorphous Silicon: A Promising Optically Programmable Photonic Material. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700754.	0.8	3
406	Dependence of coil sensitivity on sample thickness in inductively coupled photoconductance measurements. AIP Conference Proceedings, 2019, , .	0.3	3
407	Dependence of inherent selective atomic layer deposition of FeOx on Pt nanoparticles on the coreactant and temperature. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	0.9	3
408	Hard Amorphous Hydrogenated Carbon Films Deposited from an Expanding Thermal Plasma. Materials Research Society Symposia Proceedings, 1996, 436, 287.	0.1	2
409	Wall-association processes in expanding thermal hydrogen plasmas. IEEE Transactions on Plasma Science, 2002, 30, 146-147.	0.6	2
410	Roughness evolution of high-rate deposited a-SiNx:H films studied by atomic force microscopy and real time spectroscopic ellipsometry. Materials Research Society Symposia Proceedings, 2004, 808, 532.	0.1	2
411	Spectroscopic second harmonic generation as a diagnostic tool in silicon materials processing. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 3968-3972.	0.8	2
412	Crystallization Study by Transmission Electron Microscopy of SrTiO3 Thin Films Prepared by Plasma-Assisted ALD. ECS Transactions, 2013, 50, 69-77.	0.3	2
413	Identifying parasitic current pathways in CIGS solar cells by modelling dark JV response. , 2014, , .		2
414	Compositional and Structural Analysis of Al-doped ZnO Multilayers by LEAP. Microscopy and Microanalysis, 2014, 20, 526-527.	0.2	2

#	Article	IF	CITATIONS
415	Status and prospects for atomic layer deposited metal oxide thin films in passivating contacts for c-Si photovoltaics. , 2016, , .		2
416	On the synergistic effect of inorganic/inorganic barrier layers: An ellipsometric porosimetry investigation. Plasma Processes and Polymers, 2017, 14, 1700012.	1.6	2
417	Thin Film Cavity Ringdown Spectroscopy and Second Harmonic Generation on Thin a-Si:H Films. Materials Research Society Symposia Proceedings, 2003, 762, 1981.	0.1	2
418	Equivalent electric circuit model of accurate ion energy control with tailored waveform biasing. Plasma Sources Science and Technology, 0, , .	1.3	2
419	Plasma properties of a novel commercial plasma source for high-throughput processing of c-Si solar cells. , 0, , .		1
420	Controlling the silicon nitride film density for ultrahigh-rate deposition of top quality antireflection coatings. , 0, , .		1
421	Highly Efficient Microcrystalline Silicon Solar Cells Deposited from a Pure SiH4 Flow. Materials Research Society Symposia Proceedings, 2006, 910, 1.	0.1	1
422	Roughening during XeF2 etching of Si(100) through interface layers: H:Si(100) and a-Siâ^•Si(100). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2009, 27, 367-375.	0.9	1
423	Studies into the Growth Mechanism of a-Si:H Usingin situ Cavity Ring-Down Techniques. , 0, , 237-271.		1
424	The Influence of Ions and Photons during Plasma-Assisted ALD of Metal Oxides. ECS Transactions, 2010, 33, 61-67.	0.3	1
425	Expanding Thermal Plasma deposited a-Si:H thin films for surface passivation of c-Si wafers. , 2010, , .		1
426	Thermal effusion measurements: Probing hydrogen in surface passivation schemes. , 2012, , .		1
427	Room-Temperature ALD of Metal Oxide Thin Films by Energy-Enhanced ALD. ECS Transactions, 2013, 50, 93-103.	0.3	1
428	C-Si surface passivation by aluminum oxide studied with electron energy loss spectroscopy. , 2013, , .		1
429	p-type nc-SiOx:H emitter layer for silicon heterojunction solar cells grown by rf-PECVD. Materials Research Society Symposia Proceedings, 2015, 1770, 7-12.	0.1	1
430	Preface for the AVS Peter Mark award 40th anniversary collection. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, 031601.	0.9	1
431	Influence of the spatial extent of the space-charge region in c-Si on the electric-field-induced second-harmonic-generation effect. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 1840.	0.9	1
432	On the Role of Surface Diffusion and Its Relation to the Hydrogen Incorporation During Hydrogenated Amorphous Silicon Growth. Materials Research Society Symposia Proceedings, 2003, 762, 1031.	0.1	1

#	Article	IF	CITATIONS
433	Expanding thermal plasma for low-k dielectrics deposition. Materials Research Society Symposia Proceedings, 2003, 766, 691.	0.1	1
434	On the Surface Roughness Evolution During a-Si:H Growth. Materials Research Society Symposia Proceedings, 2002, 715, 1511.	0.1	1
435	High-rate microcrystalline silicon for solar cells. , 0, , .		0
436	High-rate (< 1 nm/s) plasma deposited a-SiN/sub x/:H films for mc-Si solar cell application. , 0, , .		0
437	High-rate a-Si:H and μc-Si:H Film Growth Studied by Advanced Plasma and in situ Film Diagnostics. Materials Research Society Symposia Proceedings, 2002, 715, 2561.	0.1	Ο
438	Recent advances in evanescent-wave cavity ring-down spectroscopy. , 2005, , .		0
439	External rf substrate biasing as a tool to improve the material properties of hydrogenated amorphous silicon at high deposition rates by means of the expanding thermal plasma. , 0, , .		Ο
440	Novel in situ and real-time optical probes to detect (surface) defect states of a-Si:H. Materials Research Society Symposia Proceedings, 2005, 862, 1431.	0.1	0
441	In Situ Defect Spectroscopy: Probing Dangling Bonds During a-Si: H Film Growth by Subgap Absorption. , 2006, , .		Ο
442	Real-time study of HWCVD a-Si:H film growth using optical second harmonic generation spectroscopy. Thin Solid Films, 2006, 501, 70-74.	0.8	0
443	High-Quality Surface Passivation Obtained by High-Rate Deposited Silicon Nitride, Silicon Dioxide and Amorphous Silicon using the Versatile Expanding Thermal Plasma Technique. , 2006, , .		Ο
444	Advanced Plasma Diagnostics for Thin-Film Deposition. , 0, , 117-136.		0
445	The atomic hydrogen flux during microcrystalline silicon solar cell deposition. Conference Record of the IEEE Photovoltaic Specialists Conference, 2008, , .	0.0	0
446	Electric field induced surface passivation of Si by atomic layer deposited Al <inf>2</inf> O <inf>3</inf> studied by optical second-harmonic generation. , 2009, , .		0
447	Concept of Spatially-divided Deep Reactive Ion Etching of Si using oxide atomic layer deposition in the passivation cycle. , 2012, , .		0
448	Preface to the <i>CVD</i> Special Issue: Atomicâ€Scaleâ€Engineered Materials (ASEM). Chemical Vapor Deposition, 2014, 20, 186-188.	1.4	0
449	Back Cover: High mobility In2O3:H transparent conductive oxides prepared by atomic layer deposition and solid phase crystallization (Phys. Status Solidi RRL 12/2014). Physica Status Solidi - Rapid Research Letters, 2014, 8, n/a-n/a.	1.2	0
450	Corrigendum to "Expanding Thermal Plasma Chemical Vapour Deposition of ZnO:Al Layers for CIGS Solar Cells― International Journal of Photoenergy, 2015, 2015, 1-1.	1.4	0

#	Article	IF	CITATIONS
451	Device architectures with nanocrystalline mesoporous scaffolds and thin compact layers for flexible perovskite solar cells and modules. , 2015, , .		О
452	An Isotope Study of Hydrogen Passivation of poly-Si/SiOx Passivated Contacts for Si Solar Cells. , 2017, , .		0
453	Investigating the difference in nucleation during Si-based ALD on different surfaces for future area-selective deposition. , 2018, , .		Ο
454	Corrigendum #2 to "Expanding Thermal Plasma Chemical Vapour Deposition of ZnO:Al Layers for CIGS Solar Cells― International Journal of Photoenergy, 2020, 2020, 1-1.	1.4	0
455	High-rate (> 1nm/s) and low-temperature (< 400°C) deposition of silicon nitride using an N2/SiH4 and NH3/SiH4 expanding thermal plasma. Materials Research Society Symposia Proceedings, 2003, 762, 1861.	0.1	Ο
456	Nano-scale Spectroscopy with Ultra-high-Q Monolithic Optical Resonators. , 2007, , .		0
457	Hydrogen diffusion in PECVD stack layer of silicon oxide and hydrogenated amorphous silicon nitride. Materials Research Society Symposia Proceedings, 2011, 1323, .	0.1	0