
Marek Hauptmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6046680/publications.pdf Version: 2024-02-01

MADER HALIDTMANN

#	Article	IF	CITATIONS
1	Explicit FEM analysis of the deep drawing of paperboard. Mechanics of Materials, 2015, 89, 202-215.	3.2	43
2	3D Forming of Paperboard: The Influence of Paperboard Properties on Formability. Packaging Technology and Science, 2014, 27, 677-691.	2.8	37
3	New Quality Level of Packaging Components from Paperboard through Technology Improvement in 3D Forming. Packaging Technology and Science, 2011, 24, 419-432.	2.8	35
4	The role of material composition, fiber properties and deformation mechanisms in the deep drawing of paperboard. Cellulose, 2015, 22, 3377-3395.	4.9	23
5	Optimisation of deep drawn paperboard structures by adaptation of the blank holder force trajectory. Journal of Materials Processing Technology, 2016, 232, 142-152.	6.3	20
6	New Methods for Quality Analysis of Deep-Drawn Packaging Components from Paperboard. Packaging Technology and Science, 2015, 28, 91-100.	2.8	14
7	The Effect of Concave Base Shape Elements on the Three Dimensional Forming Process of Advanced Paperboard Structures. Packaging Technology and Science, 2014, 27, 975-986.	2.8	9
8	Thermal fiber orientation tensors for digital paper physics. International Journal of Solids and Structures, 2016, 100-101, 234-244.	2.7	8
9	The sealing behavior of new monoâ€polyolefin and paperâ€based film laminates in the context of bag formâ€fillâ€seal machines. Packaging Technology and Science, 2021, 34, 117-126.	2.8	7
10	Analysis of Dominant Process Parameters in Deep-Drawing of Paperboard. BioResources, 2017, 12, .	1.0	6
11	Characterization of Influences on the Wall Stability of Deep Drawn Paperboard Shapes. BioResources, 2015, 11, .	1.0	5
12	Advances on Geometrical Limits in the Deep Drawing Process of Paperboard. BioResources, 2016, 11, .	1.0	5
13	The use and application of ultrasonic vibrations in the 3D deformation of paper and cardboard. Journal of Materials Processing Technology, 2017, 240, 23-32.	6.3	5
14	The Occurrence of Rupture in Deep-Drawing of Paperboard. BioResources, 2016, 11, .	1.0	4
15	Examination of the Transferability of Technological key Features of Paperboard Deep Drawing Towards the Application in Fastâ€Running Packaging Machines. Packaging Technology and Science, 2017, 30, 21-31.	2.8	4
16	Optical inline quality assessment of deep-drawn paperboard containers. Journal of Materials Processing Technology, 2018, 262, 615-621.	6.3	4
17	Characterization of the material elongation in the deep drawing of paperboard. Packaging Technology and Science, 2019, 32, 287-296.	2.8	3
18	Shape accuracy analysis of deep drawn packaging components made of paperboard. Nordic Pulp and Paper Research Journal, 2016, 31, 323-332.	0.7	3

MAREK HAUPTMANN

#	Article	IF	CITATIONS
19	Ultrasonic induced material compression during the gap-controlled reshaping of dry paper webs by embossing or deep drawing. BioResources, 2020, 15, 2326-2338.	1.0	3
20	Functional design of sonotrodes for deep-drawing of cardboard. BioResources, 2020, 15, 2763-2773.	1.0	3
21	Method for Fast Quality Evaluation of Deep-drawn Paperboard Packaging Components. Packaging Technology and Science, 2017, 30, 703-710.	2.8	2
22	The effect of flexible sealing jaws on the tightness of pouches made from monoâ€polyolefin films and functional papers. Packaging Technology and Science, 2021, 34, 175-186.	2.8	2
23	Temperature development of cardboard in contact with high-frequency vibrating metal surfaces. BioResources, 2019, 14, 3975-3990.	1.0	1
24	3D-forming of Paper Packaging. , 2017, , .		0
25	Material-dependent ultrasonic heating behavior during the reshaping of dry paper webs. BioResources, 2020, 15, 4947-4959.	1.0	0
26	Experimental investigation towards the transportâ€optimized design of peelable polymer tray packaging. Packaging Technology and Science, 0, , .	2.8	0