Wei-Hua Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6046272/publications.pdf Version: 2024-02-01

WELHUA VANC

#	Article	IF	CITATIONS
1	Automatic cataract grading methods based on deep learning. Computer Methods and Programs in Biomedicine, 2019, 182, 104978.	2.6	66
2	TUG1 promotes lens epithelial cell apoptosis by regulating miR-421/caspase-3 axis in age-related cataract. Experimental Cell Research, 2017, 356, 20-27.	1.2	51
3	EAD-Net: A Novel Lesion Segmentation Method in Diabetic Retinopathy Using Neural Networks. Disease Markers, 2021, 2021, 1-13.	0.6	29
4	An Evaluation System of Fundus Photograph-Based Intelligent Diagnostic Technology for Diabetic Retinopathy and Applicability for Research. Diabetes Therapy, 2019, 10, 1811-1822.	1.2	26
5	A Novel Quantitative Index of Meibomian Gland Dysfunction, the Meibomian Gland Tortuosity. Translational Vision Science and Technology, 2020, 9, 34.	1.1	26
6	Changes in vessel density of the patients with narrow antenior chamber after an acute intraocular pressure elevation observed by OCT angiography. BMC Ophthalmology, 2019, 19, 132.	0.6	23
7	Attitudes of medical workers in China toward artificial intelligence in ophthalmology: a comparative survey. BMC Health Services Research, 2021, 21, 1067.	0.9	19
8	Emerging Trends and Research Foci in Artificial Intelligence for Retinal Diseases: Bibliometric and Visualization Study. Journal of Medical Internet Research, 2022, 24, e37532.	2.1	19
9	An Artificial Intelligent Risk Classification Method of High Myopia Based on Fundus Images. Journal of Clinical Medicine, 2021, 10, 4488.	1.0	18
10	Five-Category Intelligent Auxiliary Diagnosis Model of Common Fundus Diseases Based on Fundus Images. Translational Vision Science and Technology, 2021, 10, 20.	1.1	14
11	Research on an Intelligent Lightweight-Assisted Pterygium Diagnosis Model Based on Anterior Segment Images. Disease Markers, 2021, 2021, 1-8.	0.6	14
12	Meibomian Gland Density: An Effective Evaluation Index of Meibomian Gland Dysfunction Based on Deep Learning and Transfer Learning. Journal of Clinical Medicine, 2022, 11, 2396.	1.0	12
13	Weakly supervised detection of central serous chorioretinopathy based on local binary patterns and discrete wavelet transform. Computers in Biology and Medicine, 2020, 127, 104056.	3.9	11
14	A Novel Meibomian Gland Morphology Analytic System Based on a Convolutional Neural Network. IEEE Access, 2021, 9, 23083-23094.	2.6	11
15	Optimized-Unet: Novel Algorithm for Parapapillary Atrophy Segmentation. Frontiers in Neuroscience, 2021, 15, 758887.	1.4	11
16	Implementation and Application of an Intelligent Pterygium Diagnosis System Based on Deep Learning. Frontiers in Psychology, 2021, 12, 759229.	1.1	10
17	Retinal Image Enhancement Using Cycle-Constraint Adversarial Network. Frontiers in Medicine, 2021, 8, 793726.	1.2	10
18	Screening of Common Retinal Diseases Using Six-Category Models Based on EfficientNet. Frontiers in Medicine, 2022, 9, 808402.	1.2	10

Wei-Hua Yang

#	Article	IF	CITATIONS
19	Diabetic Retinopathy Grading by Deep Graph Correlation Network on Retinal Images Without Manual Annotations. Frontiers in Medicine, 2022, 9, 872214.	1.2	9
20	Association between MDM2 rs2279744, MDM2 rs937283, and p21 rs1801270 polymorphisms and retinoblastoma susceptibility. Medicine (United States), 2018, 97, e13547.	0.4	8
21	A Novel System for Measuring Pterygium's Progress Using Deep Learning. Frontiers in Medicine, 2022, 9, 819971.	1.2	8
22	A novel multi-modal fundus image fusion method for guiding the laser surgery of central serous chorioretinopathy. Mathematical Biosciences and Engineering, 2021, 18, 4797-4816.	1.0	7
23	Evaluating the repeatability of corneal elevation through calculating the misalignment between Successive topography measurements during the follow up of LASIK. Scientific Reports, 2017, 7, 3122.	1.6	6
24	Research Progress of Artificial Intelligence Image Analysis in Systemic Disease-Related Ophthalmopathy. Disease Markers, 2022, 2022, 1-10.	0.6	5
25	Research on the Segmentation of Biomarker for Chronic Central Serous Chorioretinopathy Based on Multimodal Fundus Image. Disease Markers, 2021, 2021, 1-11.	0.6	4
26	MRI-Based Radiomics for Differentiating Orbital Cavernous Hemangioma and Orbital Schwannoma. Frontiers in Medicine, 2021, 8, 795038.	1.2	4
27	Systematic Bibliometric and Visualized Analysis of Research Hotspots and Trends on the Application of Artificial Intelligence in Ophthalmic Disease Diagnosis. Frontiers in Pharmacology, 0, 13, .	1.6	4
28	Annotation and quality control specifications for fundus color photograph. Intelligent Medicine, 2021, 1, 80-87.	1.6	3
29	A Few-Shot Learning-Based Retinal Vessel Segmentation Method for Assisting in the Central Serous Chorioretinopathy Laser Surgery. Frontiers in Medicine, 2022, 9, 821565.	1.2	3
30	Outcomes of a Foldable Capsular Vitreous Body Implantation: A Retrospective Study. Disease Markers, 2021, 2021, 1-8.	0.6	3
31	Modified internal limiting membrane flap technique for large chronic macular hole. Medicine (United) Tj ETQq1 1	0.78431 0.4	4 rgBT /Over
32	The Role of Symptom Duration and Serologic Factors in the Relapse of IgG4-Related Ophthalmic Disease following Surgery: A Retrospective Cohort Study. Disease Markers, 2022, 2022, 1-9.	0.6	2
33	Association of Iris Structural Measurements with Corneal Biomechanics in Myopic Eyes. Disease Markers, 2021, 2021, 1-6.	0.6	2
34	Efficacy of Navigated Laser Photocoagulation for Chronic Central Serous Chorioretinopathy: A Retrospective Observational Study. Disease Markers, 2022, 2022, 1-8.	0.6	2
35	Association between Iris Biological Features and Corneal Biomechanics in Myopic Eyes. Disease Markers, 2021, 2021, 1-6.	0.6	1
36	UBE2T is a prognostic biomarker and correlated with Th2 cell infiltrates in retinoblastoma. Biochemical and Biophysical Research Communications, 2022, , .	1.0	1

Wei-Hua Yang

#	Article	IF	CITATIONS
37	Analysis of Microcirculation Changes in the Macular Area and Para-Optic Disk Region After Implantable Collamer Lens Implantation in Patients With High Myopia. Frontiers in Neuroscience, 2022, 16, .	1.4	1
38	The number of minimal preference contraction operation. , 2018, , .		0
39	A Magic Wand Selection Tool for Surface of 3D Model. Recent Advances in Computer Science and Communications, 2021, 14, 2466-2476.	0.5	0
40	Efficiently Computing Geodesic Loop for Interactive Segmentation of a 3D Mesh. Recent Advances in Computer Science and Communications, 2021, 14, 2477-2488.	0.5	0