## **Gourav Dhar Bhowmick**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6046003/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Ultrafiltration membrane bioâ€fuel cell as an energyâ€efficient advanced wastewater treatment system.<br>International Journal of Energy Research, 2022, 46, 20216-20227.                                                                            | 2.2 | 6         |
| 2  | Enhancing the Performance of Microbial Fuel Cell by Using Chloroform Pre-treated Mixed Anaerobic<br>Sludge to Control Methanogenesis in Anodic Chamber. Applied Biochemistry and Biotechnology, 2021,<br>193, 846-855.                               | 1.4 | 4         |
| 3  | Removal of sodium dodecyl sulphate from wastewater and its effect on anodic biofilm and performance of microbial fuel cell. International Biodeterioration and Biodegradation, 2021, 156, 105108.                                                    | 1.9 | 30        |
| 4  | Bismuth-Impregnated Ruthenium with Activated Carbon as Photocathode Catalyst to Proliferate the Efficacy of a Microbial Fuel Cell. Journal of Hazardous, Toxic, and Radioactive Waste, 2021, 25, .                                                   | 1.2 | 4         |
| 5  | Start-Up of Anammox SBR from Non-Specific Inoculum and Process Acceleration Methods by<br>Hydrazine. Water (Switzerland), 2021, 13, 350.                                                                                                             | 1.2 | 55        |
| 6  | Preparation of Pd–Ni Nanoparticles Supported on Activated Carbon for Efficient Removal of Basic<br>Blue 3 from Water. Water (Switzerland), 2021, 13, 1211.                                                                                           | 1.2 | 22        |
| 7  | Synthesis and Characterization of Pd-Ni Bimetallic Nanoparticles as Efficient Adsorbent for the<br>Removal of Acid Orange 8 Present in Wastewater. Water (Switzerland), 2021, 13, 1095.                                                              | 1.2 | 42        |
| 8  | Preparation of Activated Carbon from the Wood of Paulownia tomentosa as an Efficient Adsorbent<br>for the Removal of Acid Red 4 and Methylene Blue Present in Wastewater. Water (Switzerland), 2021,<br>13, 1453.                                    | 1.2 | 32        |
| 9  | Improved Wastewater Treatment by Using Integrated Microbial Fuel Cell-Membrane Bioreactor System<br>Along with Ruthenium/activated Carbon Cathode Catalyst to Enhance Bio-energy Recovery. Water<br>Science and Technology Library, 2021, , 183-192. | 0.2 | 1         |
| 10 | Utilisation of waste medicine wrappers as an efficient low-cost electrode material for microbial fuel cell. Environmental Technology (United Kingdom), 2020, 41, 1209-1218.                                                                          | 1.2 | 26        |
| 11 | Novel low-cost activated algal biochar as a cathode catalyst for improving performance of microbial fuel cell. Sustainable Energy Technologies and Assessments, 2020, 42, 100808.                                                                    | 1.7 | 31        |
| 12 | Anodic inoculum pre-treatment by extracts of Azadirachta indica leaves and Allium sativum peels for<br>improved bioelectricity recovery from microbial fuel cell. International Journal of Hydrogen Energy,<br>2020, 45, 23391-23400.                | 3.8 | 8         |
| 13 | Improving performance of microbial fuel cell by enhanced bacterial-anode interaction using sludge<br>immobilized beads with activated carbon. Chemical Engineering Research and Design, 2020, 143, 285-292.                                          | 2.7 | 24        |
| 14 | Improved Performance of Microbial Fuel Cell by In Situ Methanogenesis Suppression While Treating<br>Fish Market Wastewater. Applied Biochemistry and Biotechnology, 2020, 192, 1060-1075.                                                            | 1.4 | 13        |
| 15 | TiO2-Si- or SrTiO3-Si-impregnated PVA–based low-cost proton exchange membranes for application in microbial fuel cell. Ionics, 2020, 26, 6195-6205.                                                                                                  | 1.2 | 10        |
| 16 | ANAMMOX-denitrification biomass in microbial fuel cell to enhanceÂthe electricity generation and nitrogen removal efficiency. Biodegradation, 2020, 31, 249-264.                                                                                     | 1.5 | 62        |
| 17 | Coronavirus disease 2019 (COVID-19) outbreak: some serious consequences with urban and rural water cycle. Npj Clean Water, 2020, 3, .                                                                                                                | 3.1 | 118       |
| 18 | Surfactant removal from wastewater using photo-cathode microbial fuel cell and laterite-based hybrid treatment system. Bioprocess and Biosystems Engineering, 2020, 43, 2075-2084.                                                                   | 1.7 | 19        |

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Effect of Using a Ceramic Separator on the Performance of Hydroponic Constructed<br>Wetland-Microbial Fuel Cell. Journal of Hazardous, Toxic, and Radioactive Waste, 2020, 24, .                                                    | 1.2 | 17        |
| 20 | Using rhodium as a cathode catalyst for enhancing performance of microbial fuel cell. International<br>Journal of Hydrogen Energy, 2019, 44, 22218-22222.                                                                           | 3.8 | 44        |
| 21 | Tailoring hydrophilic and porous nature of polysiloxane derived ceramer and ceramic membranes for enhanced bioelectricity generation in microbial fuel cell. Ionics, 2019, 25, 5907-5918.                                           | 1.2 | 18        |
| 22 | TiO2/Activated carbon photo cathode catalyst exposed to ultraviolet radiation to enhance the efficacy of integrated microbial fuel cell-membrane bioreactor. Bioresource Technology Reports, 2019, 7, 100303.                       | 1.5 | 20        |
| 23 | Improved Wastewater Treatment by Combined System of Microbial Fuel Cell with Activated<br>Carbon/TiO2 Cathode Catalyst and Membrane Bioreactor. Journal of the Institution of Engineers<br>(India): Series A, 2019, 100, 675-682.   | 0.6 | 32        |
| 24 | Microbial fuel cell performance of graphitic carbon functionalized porous polysiloxane based ceramic membranes. Bioelectrochemistry, 2019, 129, 259-269.                                                                            | 2.4 | 27        |
| 25 | Improved performance of microbial fuel cell by using conductive ink printed cathode containing<br>Co3O4 or Fe3O4. Electrochimica Acta, 2019, 310, 173-183.                                                                          | 2.6 | 58        |
| 26 | A novel proton exchange membrane developed from clay and activated carbon derived from coconut shell for application in microbial fuel cell. Biochemical Engineering Journal, 2019, 148, 170-177.                                   | 1.8 | 79        |
| 27 | SiOC-based polymer derived-ceramic porous anodes for microbial fuel cells. Biochemical Engineering<br>Journal, 2019, 148, 29-36.                                                                                                    | 1.8 | 33        |
| 28 | Multi-walled carbon nanotube and carbide-derived carbon supported metal phthalocyanines as cathode catalysts for microbial fuel cell applications. Sustainable Energy and Fuels, 2019, 3, 3525-3537.                                | 2.5 | 40        |
| 29 | Enhancement of bioelectricity generation and algal productivity in microbial carbon-capture cell<br>using low cost coconut shell as membrane separator. Biochemical Engineering Journal, 2018, 133,<br>205-213.                     | 1.8 | 63        |
| 30 | Application of Low-Cost Cu–Sn Bimetal Alloy as Oxygen Reduction Reaction Catalyst for Improving<br>Performance of the Microbial Fuel Cell. MRS Advances, 2018, 3, 663-668.                                                          | 0.5 | 28        |
| 31 | Bismuth doped TiO2 as an excellent photocathode catalyst to enhance the performance of microbial fuel cell. International Journal of Hydrogen Energy, 2018, 43, 7501-7510.                                                          | 3.8 | 96        |
| 32 | Novel multi walled carbon nanotube based nitrogen impregnated Co and Fe cathode catalysts for<br>improved microbial fuel cell performance. International Journal of Hydrogen Energy, 2018, 43,<br>23027-23035.                      | 3.8 | 58        |
| 33 | Synthesis of Tungstate Oxide/Bismuth Tungstate Composite and Application in Microbial Fuel Cell as<br>Superior Low-Cost Cathode Catalyst than Platinum. Journal of the Electrochemical Society, 2018, 165,<br>G146-G153.            | 1.3 | 34        |
| 34 | Synthesis of bimetallic iron ferrite Co0.5Zn0.5Fe2O4 as a superior catalyst for oxygen reduction reaction to replace noble metal catalysts in microbial fuel cell. International Journal of Hydrogen Energy, 2018, 43, 19196-19205. | 3.8 | 54        |
| 35 | Application of Low-Cost Transition Metal Based Co0.5Zn0.5Fe2O4 as Oxygen Reduction Reaction Catalyst for Improving Performance of Microbial Fuel Cell. MRS Advances, 2018, 3, 3171-3179.                                            | 0.5 | 14        |
| 36 | Carbon Supported Cu-Sn Bimetallic Alloy as an Excellent Low-Cost Cathode Catalyst for Enhancing<br>Oxygen Reduction Reaction in Microbial Fuel Cell. Journal of the Electrochemical Society, 2018, 165,<br>F621-F628.               | 1.3 | 45        |