
Aleksandra Skirycz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6045701/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Role of Triacylglycerol in the Protection of Cells against Lipotoxicity under Drought in <i>Lolium multiflorum/Festuca arundinacea</i> Introgression Forms. Plant and Cell Physiology, 2022, 63, 353-368.	1.5	6
2	2′,3′-cAMP treatment mimics the stress molecular response in <i>Arabidopsis thaliana</i> . Plant Physiology, 2022, 188, 1966-1978.	2.3	21
3	Past accomplishments and future challenges of the multi-omics characterization of leaf growth. Plant Physiology, 2022, 189, 473-489.	2.3	6
4	Regulation of Plant Primary Metabolism – How Results From Novel Technologies Are Extending Our Understanding From Classical Targeted Approaches. Critical Reviews in Plant Sciences, 2022, 41, 32-51.	2.7	3
5	Autophagy modulates the metabolism and growth of tomato fruit during development. Horticulture Research, 2022, 9, .	2.9	5
6	The diversity of quinoa morphological traits and seed metabolic composition. Scientific Data, 2022, 9, .	2.4	10
7	Selective autophagy regulates heat stress memory in Arabidopsis by NBR1-mediated targeting of HSP90.1 and ROF1. Autophagy, 2021, 17, 2184-2199.	4.3	68
8	Autophagy is responsible for the accumulation of proteogenic dipeptides in response to heat stress in <i>ArabidopsisÂthaliana</i> . FEBS Journal, 2021, 288, 281-292.	2.2	26
9	Arabidopsis REI-LIKE proteins activate ribosome biogenesis during cold acclimation. Scientific Reports, 2021, 11, 2410.	1.6	19
10	PROMISed: A novel web-based tool to facilitate analysis and visualization of the molecular interaction networks from co-fractionation mass spectrometry (CF-MS) experiments. Computational and Structural Biotechnology Journal, 2021, 19, 5117-5125.	1.9	9
11	Global mapping of protein–metabolite interactions in Saccharomyces cerevisiae reveals that Ser-Leu dipeptide regulates phosphoglycerate kinase activity. Communications Biology, 2021, 4, 181.	2.0	32
12	A Multi-OMICs Approach Sheds Light on the Higher Yield Phenotype and Enhanced Abiotic Stress Tolerance in Tobacco Lines Expressing the Carrot lycopene β-cyclase1 Gene. Frontiers in Plant Science, 2021, 12, 624365.	1.7	12
13	Functional characterization of proton antiport regulation in the thylakoid membrane. Plant Physiology, 2021, 187, 2209-2229.	2.3	11
14	Multi-omics analysis of early leaf development in Arabidopsis thaliana. Patterns, 2021, 2, 100235.	3.1	24
15	Tyrâ€Asp inhibition of glyceraldehyde 3â€phosphate dehydrogenase affects plant redox metabolism. EMBO Journal, 2021, 40, e106800.	3.5	29
16	Spatially Enriched Paralog Rearrangements Argue Functionally Diverse Ribosomes Arise during Cold Acclimation in Arabidopsis. International Journal of Molecular Sciences, 2021, 22, 6160.	1.8	10
17	Heteromeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress in Arabidopsis. Nature Communications, 2021, 12, 3426.	5.8	100
18	Characterization of the Heat-Stable Proteome during Seed Germination in Arabidopsis with Special Focus on LEA Proteins. International Journal of Molecular Sciences, 2021, 22, 8172.	1.8	12

ALEKSANDRA SKIRYCZ

#	Article	IF	CITATIONS
19	Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nature Methods, 2021, 18, 747-756.	9.0	403
20	Combination of network and molecule structure accurately predicts competitive inhibitory interactions. Computational and Structural Biotechnology Journal, 2021, 19, 2170-2178.	1.9	5
21	Experimental methods for dissecting the terraincognita of protein-metabolite interactomes. Current Opinion in Systems Biology, 2021, 28, 100403.	1.3	7
22	Proteogenic Dipeptides Are Characterized by Diel Fluctuations and Target of Rapamycin Complex-Signaling Dependency in the Model Plant Arabidopsis thaliana. Frontiers in Plant Science, 2021, 12, 758933.	1.7	3
23	Efficient root metabolism improves drought resistance of Festuca arundinacea. Plant and Cell Physiology, 2020, 61, 492-504.	1.5	15
24	Identification and Characterization of the Heat-Induced Plastidial Stress Granules Reveal New Insight Into Arabidopsis Stress Response. Frontiers in Plant Science, 2020, 11, 595792.	1.7	24
25	Separation and Paired Proteome Profiling of Plant Chloroplast and Cytoplasmic Ribosomes. Plants, 2020, 9, 892.	1.6	12
26	The Isolation of Stress Granules From Plant Material. Current Protocols in Plant Biology, 2020, 5, e20118.	2.8	6
27	Adjustment of Photosynthetic and Antioxidant Activities to Water Deficit Is Crucial in the Drought Tolerance of Lolium multiflorum/Festuca arundinacea Introgression Forms. International Journal of Molecular Sciences, 2020, 21, 5639.	1.8	6
28	An Abundance and Interaction Encyclopedia of Plant Protein Function. Trends in Plant Science, 2020, 25, 627-630.	4.3	10
29	Towards a functional understanding of the plant metabolome. Current Opinion in Plant Biology, 2020, 55, 47-51.	3.5	31
30	Protein Complex Identification and quantitative complexome by CN-PAGE. Scientific Reports, 2019, 9, 11523.	1.6	24
31	Protein and metabolite composition of Arabidopsis stress granules. New Phytologist, 2019, 222, 1420-1433.	3.5	103
32	Iron-Dependent Regulation of Molybdenum Cofactor Biosynthesis Genes in Escherichia coli. Journal of Bacteriology, 2019, 201, .	1.0	10
33	Emerging strategies for the identification of protein–metabolite interactions. Journal of Experimental Botany, 2019, 70, 4605-4618.	2.4	23
34	Structural and metabolic alterations in root systems under limited water conditions in forage grasses of Lolium-Festuca complex. Plant Science, 2019, 283, 211-223.	1.7	25
35	PROMIS: Global Analysis of PROteinâ€Metabolite Interactions. Current Protocols in Plant Biology, 2019, 4, e20101.	2.8	18
36	Interaction of 2',3'-cAMP with Rbp47b plays a role in stress granule formation. Plant Physiology, 2018, 177, pp.00285.2018.	2.3	36

ALEKSANDRA SKIRYCZ

#	Article	IF	CITATIONS
37	PROMIS, global analysis of PROtein–metabolite interactions using size separation in Arabidopsis thaliana. Journal of Biological Chemistry, 2018, 293, 12440-12453.	1.6	55
38	2 in 1: One-step Affinity Purification for the Parallel Analysis of Protein-Protein and Protein-Metabolite Complexes. Journal of Visualized Experiments, 2018, , .	0.2	4
39	System-wide detection of protein-small molecule complexes suggests extensive metabolite regulation in plants. Scientific Reports, 2017, 7, 42387.	1.6	37
40	Affinity purification with metabolomic and proteomic analysis unravels diverse roles of nucleoside diphosphate kinases. Journal of Experimental Botany, 2017, 68, 3487-3499.	2.4	30
41	Medicinal Bioprospecting of the Amazon Rainforest: A Modern Eldorado?. Trends in Biotechnology, 2016, 34, 781-790.	4.9	39
42	Editorial: Natural diversity in the new millennium. Frontiers in Plant Science, 2015, 6, 897.	1.7	1
43	Oil palm natural diversity and the potential for yield improvement. Frontiers in Plant Science, 2015, 6, 190.	1.7	198
44	Poly(ADP-Ribose)Polymerase Activity Controls Plant Growth by Promoting Leaf Cell Number. PLoS ONE, 2014, 9, e90322.	1.1	28
45	Canga biodiversity, a matter of mining. Frontiers in Plant Science, 2014, 5, 653.	1.7	118
46	Transcriptional coordination between leaf cell differentiation and chloroplast development established by TCP20 and the subgroup Ib bHLH transcription factors. Plant Molecular Biology, 2014, 85, 233-245.	2.0	31
47	ETHYLENE RESPONSE FACTOR6 Acts as a Central Regulator of Leaf Growth under Water-Limiting Conditions in Arabidopsis Â. Plant Physiology, 2013, 162, 319-332.	2.3	210
48	DELLA Signaling Mediates Stress-Induced Cell Differentiation in Arabidopsis Leaves through Modulation of Anaphase-Promoting Complex/Cyclosome Activity Â. Plant Physiology, 2012, 159, 739-747.	2.3	100
49	Tackling Drought Stress: RECEPTOR-LIKE KINASES Present New Approaches. Plant Cell, 2012, 24, 2262-2278.	3.1	155
50	Exit from Proliferation during Leaf Development in Arabidopsis thaliana: A Not-So-Gradual Process. Developmental Cell, 2012, 22, 64-78.	3.1	361
51	Pause-and-Stop: The Effects of Osmotic Stress on Cell Proliferation during Early Leaf Development in <i>Arabidopsis</i> and a Role for Ethylene Signaling in Cell Cycle Arrest. Plant Cell, 2011, 23, 1876-1888.	3.1	268
52	A Reciprocal ¹⁵ N-Labeling Proteomic Analysis of Expanding <i>Arabidopsis</i> Leaves Subjected to Osmotic Stress Indicates Importance of Mitochondria in Preserving Plastid Functions. Journal of Proteome Research, 2011, 10, 1018-1029.	1.8	38
53	Survival and growth of Arabidopsis plants given limited water are not equal. Nature Biotechnology, 2011, 29, 212-214.	9.4	267
54	More from less: plant growth under limited water. Current Opinion in Biotechnology, 2010, 21, 197-203.	3.3	427

#	Article	IF	CITATIONS
55	Abscisic acid, ethylene and gibberellic acid act at different developmental stages to instruct the adaptation of young leaves to stress. Plant Signaling and Behavior, 2010, 5, 473-475.	1.2	24
56	Developmental Stage Specificity and the Role of Mitochondrial Metabolism in the Response of Arabidopsis Leaves to Prolonged Mild Osmotic Stress Â. Plant Physiology, 2009, 152, 226-244.	2.3	269
57	Matrixâ€assisted laser desorption/ionization timeâ€ofâ€flight mass spectrometry monitoring of anthocyanins in extracts from <i>Arabidopsis thaliana</i> leaves. Rapid Communications in Mass Spectrometry, 2008, 22, 3949-3956.	0.7	31
58	The DOF transcription factor OBP1 is involved in cell cycle regulation in <i>Arabidopsis thaliana</i> . Plant Journal, 2008, 56, 779-792.	2.8	120
59	Transcription factor AtDOF4;2 affects phenylpropanoid metabolism in Arabidopsis thaliana. New Phytologist, 2007, 175, 425-438.	3.5	99
60	DOF transcription factor AtDof1.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis. Plant Journal, 2006, 47, 10-24.	2.8	243
61	Expression of human dopamine receptor in potato (Solanum tuberosum) results in altered tuber carbon metabolism. BMC Plant Biology, 2005, 5, 1.	1.6	69
62	Arabidopsis AtDGK7, the Smallest Member of Plant Diacylglycerol Kinases (DGKs), Displays Unique Biochemical Features and Saturates at Low Substrate Concentration. Journal of Biological Chemistry, 2005, 280, 34888-34899.	1.6	69
63	The catecholamine biosynthesis route in potato is affected by stress. Plant Physiology and Biochemistry, 2004, 42, 593-600.	2.8	80