
Ana SÃ-lvia de Almeida Scarcella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6045688/publications.pdf

Version: 2024-02-01

Ana SÃ_tvia de Almeida

#	Article	IF	CITATIONS
1	Fungal communities differentially respond to warming and drought in tropical grassland soil. Molecular Ecology, 2020, 29, 1550-1559.	2.0	41
2	A Halotolerant Endo-1,4-β-Xylanase from Aspergillus clavatus with Potential Application for Agroindustrial Residues Saccharification. Applied Biochemistry and Biotechnology, 2020, 191, 1111-1126.	1.4	17
3	Temperature, pH and carbon source affect drastically indole acetic acid production of plant growth promoting yeasts. Brazilian Journal of Chemical Engineering, 2017, 34, 429-438.	0.7	16
4	Prospection of Fungal Lignocellulolytic Enzymes Produced from Jatoba (Hymenaea courbaril) and Tamarind (Tamarindus indica) Seeds: Scaling for Bioreactor and Saccharification Profile of Sugarcane Bagasse. Microorganisms, 2021, 9, 533.	1.6	16
5	Potential biodiesel production from Brazilian plant oils and spent coffee grounds by Beauveria bassiana lipase 1 expressed in Aspergillus nidulans A773 using different agroindustry inputs. Journal of Cleaner Production, 2020, 256, 120513.	4.6	15
6	The profile secretion of Aspergillus clavatus: Different pre-treatments of sugarcane bagasse distinctly induces holocellulases for the lignocellulosic biomass conversion into sugar. Renewable Energy, 2021, 165, 748-757.	4.3	13
7	Saccharification of different sugarcane bagasse varieties by enzymatic cocktails produced by Mycothermus thermophilus and Trichoderma reesei RP698 cultures in agro-industrial residues. Energy, 2021, 226, 120360.	4.5	9
8	Bioconversion of Agro-industrial Residues to Second-Generation Bioethanol. , 2020, , 23-47.		9
9	Holocellulase production by filamentous fungi: potential in the hydrolysis of energy cane and other sugarcane varieties. Biomass Conversion and Biorefinery, 2023, 13, 1163-1174.	2.9	7
10	Effect of enzymatic pretreatment of sugarcane bagasse with recombinant hemicellulases and esterase prior to the application of the cellobiohydrolase CBH I Megazyme®. Biomass Conversion and Biorefinery, 2022, 12, 491-499.	2.9	5
11	Paper Industry Wastes as Carbon Sources for <i>Aspergillus</i> Species Cultivation and Production of an Enzymatic Cocktail for Biotechnological Applications. Industrial Biotechnology, 2020, 16, 56-60.	0.5	5
12	Cold-Active Lytic Enzymes and Their Applicability in the Biocontrol of Postharvest Fungal Pathogens. Journal of Agricultural and Food Chemistry, 2020, 68, 6461-6463.	2.4	4
13	Perspectives on Exploring Denitrifying Fungi as a Model To Evaluate Nitrous Oxide Production and Reduce Emissions from Agricultural Soils. Journal of Agricultural and Food Chemistry, 2019, 67, 12153-12154.	2.4	3
14	Effects of multiple climate change factors on exoenzyme activities and CO2 efflux in a tropical grassland. Soil Biology and Biochemistry, 2020, 148, 107877.	4.2	3
15	Perspectives on Expanding the Repertoire of Novel Microbial Chitinases for Biological Control. Journal of Agricultural and Food Chemistry, 2021, 69, 3284-3288.	2.4	3
16	Matrix Discriminant Analysis Evidenced Surface-Lithium as an Important Factor to Increase the Hydrolytic Saccharification of Sugarcane Bagasse. Molecules, 2019, 24, 3614.	1.7	1
17	INFECTION RELATED TO HEALTH ASSISTANCE ASSOCIATED TO Acinetobacter baumannii: LITERATURE REVIEW. Revista Brasileira De análises CIÃnicas, 2017, 49, .	0.0	1