Huhu Cheng

List of Publications by Citations

Source: https://exaly.com/author-pdf/6044910/huhu-cheng-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

81 9,857 90 44 h-index g-index citations papers 6.35 15.6 11,379 90 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
81	Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. <i>Journal of the American Chemical Society</i> , 2012 , 134, 15-8	16.4	1623
80	All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. <i>Advanced Materials</i> , 2013 , 25, 2326-31	24	912
79	Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes. <i>Advanced Materials</i> , 2013 , 25, 591-5	24	676
78	A versatile, ultralight, nitrogen-doped graphene framework. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 11371-5	16.4	663
77	Facile fabrication of light, flexible and multifunctional graphene fibers. <i>Advanced Materials</i> , 2012 , 24, 1856-61	24	464
76	Graphene-based smart materials. <i>Nature Reviews Materials</i> , 2017 , 2,	73.3	391
75	Newly-designed complex ternary Pt/PdCu nanoboxes anchored on three-dimensional graphene framework for highly efficient ethanol oxidation. <i>Advanced Materials</i> , 2012 , 24, 5493-8	24	287
74	Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors. <i>Nanoscale</i> , 2013 , 5, 3428-34	7.7	274
73	A Versatile, Ultralight, Nitrogen-Doped Graphene Framework. <i>Angewandte Chemie</i> , 2012 , 124, 11533-1	15,367	262
72	Direct Power Generation from a Graphene Oxide Film under Moisture. <i>Advanced Materials</i> , 2015 , 27, 4351-7	24	256
71	Graphene fibers with predetermined deformation as moisture-triggered actuators and robots. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 10482-6	16.4	238
70	Moisture-activated torsional graphene-fiber motor. Advanced Materials, 2014, 26, 2909-13	24	237
69	Highly efficient moisture-enabled electricity generation from graphene oxide frameworks. <i>Energy and Environmental Science</i> , 2016 , 9, 912-916	35.4	181
68	All-in-one graphene fiber supercapacitor. <i>Nanoscale</i> , 2014 , 6, 6448-51	7.7	174
67	Graphene fiber: a new material platform for unique applications. NPG Asia Materials, 2014, 6, e113-e11	B10.3	158
66	Direct solar steam generation system for clean water production. <i>Energy Storage Materials</i> , 2019 , 18, 429-446	19.4	151
65	Graphene-quantum-dot assembled nanotubes: a new platform for efficient Raman enhancement. <i>ACS Nano</i> , 2012 , 6, 2237-44	16.7	149

(2017-2014)

64	Graphene quantum dots-three-dimensional graphene composites for high-performance supercapacitors. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 19307-13	3.6	135
63	Electric power generation via asymmetric moisturizing of graphene oxide for flexible, printable and portable electronics. <i>Energy and Environmental Science</i> , 2018 , 11, 1730-1735	35.4	115
62	One Single Graphene Oxide Film for Responsive Actuation. ACS Nano, 2016, 10, 9529-9535	16.7	115
61	High throughput of clean water excluding ions, organic media, and bacteria from defect-abundant graphene aerogel under sunlight. <i>Nano Energy</i> , 2018 , 46, 415-422	17.1	111
60	Graphene microtubings: controlled fabrication and site-specific functionalization. <i>Nano Letters</i> , 2012 , 12, 5879-84	11.5	104
59	Spontaneous, Straightforward Fabrication of Partially Reduced Graphene Oxide-Polypyrrole Composite Films for Versatile Actuators. <i>ACS Nano</i> , 2016 , 10, 4735-41	16.7	101
58	Three-dimensional water evaporation on a macroporous vertically aligned graphene pillar array under one sun. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 15303-15309	13	95
57	An all-cotton-derived, arbitrarily foldable, high-rate, electrochemical supercapacitor. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 8042-5	3.6	91
56	Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts. <i>Nature Communications</i> , 2018 , 9, 4166	17.4	90
55	Series of in-fiber graphene supercapacitors for flexible wearable devices. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 2547-2551	13	86
54	Functionalized graphitic carbon nitride for metal-free, flexible and rewritable nonvolatile memory device via direct laser-writing. <i>Scientific Reports</i> , 2014 , 4, 5882	4.9	80
53	A Microstructured Graphene/Poly(N-isopropylacrylamide) Membrane for Intelligent Solar Water Evaporation. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 16343-16347	16.4	80
52	Graphene-Based Functional Architectures: Sheets Regulation and Macrostructure Construction toward Actuators and Power Generators. <i>Accounts of Chemical Research</i> , 2017 , 50, 1663-1671	24.3	79
51	Three-dimensional graphene-polypyrrole hybrid electrochemical actuator. <i>Nanoscale</i> , 2012 , 4, 7563-8	7.7	79
50	Solution-Processed Ultraelastic and Strong Air-Bubbled Graphene Foams. Small, 2016, 12, 3229-34	11	71
49	A Graphene Fibriform Responsor for Sensing Heat, Humidity, and Mechanical Changes. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 14951-5	16.4	70
48	A General and Extremely Simple Remote Approach toward Graphene Bulks with In Situ Multifunctionalization. <i>Advanced Materials</i> , 2016 , 28, 3305-12	24	67
47	Self-Healing Graphene Oxide Based Functional Architectures Triggered by Moisture. <i>Advanced Functional Materials</i> , 2017 , 27, 1703096	15.6	66

46	A rationally-designed synergetic polypyrrole/graphene bilayer actuator. <i>Journal of Materials Chemistry</i> , 2012 , 22, 4015		62
45	Spontaneous power source in ambient air of a well-directionally reduced graphene oxide bulk. Energy and Environmental Science, 2018 , 11, 2839-2845	35.4	58
44	Highly Efficient Clean Water Production from Contaminated Air with a Wide Humidity Range. <i>Advanced Materials</i> , 2020 , 32, e1905875	24	58
43	Rollable, Stretchable, and Reconfigurable Graphene Hygroelectric Generators. <i>Advanced Materials</i> , 2019 , 31, e1805705	24	57
42	Highly Efficient Moisture-Triggered Nanogenerator Based on Graphene Quantum Dots. <i>ACS Applied Materials & Dots interfaces</i> , 2017 , 9, 38170-38175	9.5	54
41	All-region-applicable, continuous power supply of graphene oxide composite. <i>Energy and Environmental Science</i> , 2019 , 12, 1848-1856	35.4	53
40	Flexible in-plane graphene oxide moisture-electric converter for touchless interactive panel. <i>Nano Energy</i> , 2018 , 45, 37-43	17.1	53
39	Ternary Pd2/PtFe networks supported by 3D graphene for efficient and durable electrooxidation of formic acid. <i>Chemical Communications</i> , 2012 , 48, 11865-7	5.8	47
38	Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output. <i>Nature Nanotechnology</i> , 2021 , 16, 811-819	28.7	44
37	Intelligent multiple-liquid evaporation power generation platform using distinctive Jaboticaba-like carbon nanosphere@TiO2 nanowires. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 6766-6772	13	40
36	Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in graphene oxideNafion nanocomposite film. <i>Electrochimica Acta</i> , 2012 , 65, 122-126	6.7	39
35	Moist-electric generation. <i>Nanoscale</i> , 2019 , 11, 23083-23091	7.7	35
34	Maximization of Spatial Charge Density: An Approach to Ultrahigh Energy Density of Capacitive Charge Storage. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 14541-14549	16.4	34
33	Functional microspheres of graphene quantum dots. <i>Nanotechnology</i> , 2012 , 23, 255605	3.4	33
32	Uniquely arranged graphene-on-graphene structure as a binder-free anode for high-performance lithium-ion batteries. <i>Small</i> , 2014 , 10, 5035-41	11	30
31	Preparation of multifunctional microchannel-network graphene foams. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 16786-16792	13	27
30	A versatile, superelastic polystyrene/graphene capsule-like framework. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 10118-10123	13	24
29	Transparent, self-healing, arbitrary tailorable moist-electric film generator. <i>Nano Energy</i> , 2020 , 67, 104	2 3 8.1	24

28	Functional graphene springs for responsive actuation. <i>Nanoscale</i> , 2014 , 6, 11052-6	7.7	22
27	Reduced Graphene Oxide-Based Spectrally Selective Absorber with an Extremely Low Thermal Emittance and High Solar Absorptance. <i>Advanced Science</i> , 2020 , 7, 1903125	13.6	21
26	Graphene Fibers with Predetermined Deformation as Moisture-Triggered Actuators and Robots. <i>Angewandte Chemie</i> , 2013 , 125, 10676-10680	3.6	21
25	Janus-interface engineering boosting solar steam towards high-efficiency water collection. <i>Energy</i> and Environmental Science,	35.4	21
24	Emerging Materials for Water-Enabled Electricity Generation 2021 , 3, 193-209		18
23	A respiration-detective graphene oxide/lithium battery. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 1915	4 -11 915	916
22	An all-in-one and scalable carbon fibre-based evaporator by using the weaving craft for high-efficiency and stable solar desalination. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 10945-10952	13	15
21	Maximization of Spatial Charge Density: An Approach to Ultrahigh Energy Density of Capacitive Charge Storage. <i>Angewandte Chemie</i> , 2020 , 132, 14649-14657	3.6	14
20	Carbon nanotubellanopipe composite vertical arrays for enhanced electrochemical capacitance. <i>Carbon</i> , 2013 , 64, 507-515	10.4	13
19	Graphene Oxide Assemblies for Sustainable Clean-Water Harvesting and Green-Electricity Generation. <i>Accounts of Materials Research</i> , 2021 , 2, 97-107	7.5	10
19		7·5 3.6	10
	Generation. Accounts of Materials Research, 2021, 2, 97-107 A Graphene Fibriform Responsor for Sensing Heat, Humidity, and Mechanical Changes. Angewandte		
18	Generation. Accounts of Materials Research, 2021, 2, 97-107 A Graphene Fibriform Responsor for Sensing Heat, Humidity, and Mechanical Changes. Angewandte Chemie, 2015, 127, 15164-15168 Sunlight-coordinated high-performance Moisture Power in Natural Condition Advanced Materials,	3.6	9
18	Generation. Accounts of Materials Research, 2021, 2, 97-107 A Graphene Fibriform Responsor for Sensing Heat, Humidity, and Mechanical Changes. Angewandte Chemie, 2015, 127, 15164-15168 Sunlight-coordinated high-performance Moisture Power in Natural Condition Advanced Materials, 2021, e2103897	3.6	9
18 17 16	A Graphene Fibriform Responsor for Sensing Heat, Humidity, and Mechanical Changes. <i>Angewandte Chemie</i> , 2015, 127, 15164-15168 Sunlight-coordinated high-performance Moisture Power in Natural Condition <i>Advanced Materials</i> , 2021, e2103897 Moisture adsorption-desorption full cycle power generation <i>Nature Communications</i> , 2022, 13, 2524 A Cascade Battery: Coupling Two Sequential Electrochemical Reactions in a Single Battery.	3.6 24 17.4	9 9
18 17 16	Generation. Accounts of Materials Research, 2021, 2, 97-107 A Graphene Fibriform Responsor for Sensing Heat, Humidity, and Mechanical Changes. Angewandte Chemie, 2015, 127, 15164-15168 Sunlight-coordinated high-performance Moisture Power in Natural Condition Advanced Materials, 2021, e2103897 Moisture adsorption-desorption full cycle power generation Nature Communications, 2022, 13, 2524 A Cascade Battery: Coupling Two Sequential Electrochemical Reactions in a Single Battery. Advanced Materials, 2021, 33, e2105480 Enabling fast-charging selenium-based aqueous batteries via conversion reaction with copper ions	3.6 24 17.4 24	99976
18 17 16 15	A Graphene Fibriform Responsor for Sensing Heat, Humidity, and Mechanical Changes. <i>Angewandte Chemie</i> , 2015, 127, 15164-15168 Sunlight-coordinated high-performance Moisture Power in Natural Condition <i>Advanced Materials</i> , 2021, e2103897 Moisture adsorption-desorption full cycle power generation <i>Nature Communications</i> , 2022, 13, 2524 A Cascade Battery: Coupling Two Sequential Electrochemical Reactions in a Single Battery. <i>Advanced Materials</i> , 2021, 33, e2105480 Enabling fast-charging selenium-based aqueous batteries via conversion reaction with copper ions <i>Nature Communications</i> , 2022, 13, 1863	3.6 24 17.4 24	99976

10	Mechanism of Nitrogen-Doped TiC Quantum Dots for Free-Radical Scavenging and the Ultrasensitive HO Detection Performance. <i>ACS Applied Materials & Detection Performance</i> , 13, 42442-424	58 ^{.5}	5
9	Textile-based moisture power generator with dual asymmetric structure and high flexibility for wearable applications. <i>Nano Energy</i> , 2022 , 107017	17.1	4
8	Highly defective, doping-free graphene framework: A rapid one-step formation avenue. <i>Journal of Power Sources</i> , 2021 , 497, 229881	8.9	2
7	Custom-Built Graphene Acoustic-Absorbing Aerogel for Audio Signal Recognition. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2100227	4.6	2
6	Progress in 3D-Graphene Assemblies Preparation for Solar-Thermal Steam Generation and Water Treatment. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2021, 2101020-0	3.8	2
5	Graphene Ionogel Ultra-Fast Filter Supercapacitor with 4½ Workable Window and 150 ½ Operable Temperature <i>Small</i> , 2022 , e2200916	11	2
4	Innentitelbild: A Versatile, Ultralight, Nitrogen-Doped Graphene Framework (Angew. Chem. 45/2012). <i>Angewandte Chemie</i> , 2012 , 124, 11336-11336	3.6	1
3	Hygroelectric Generators: Rollable, Stretchable, and Reconfigurable Graphene Hygroelectric Generators (Adv. Mater. 2/2019). <i>Advanced Materials</i> , 2019 , 31, 1970013	24	1
2	The promising solar-powered water purification based on graphene functional architectures. <i>EcoMat</i> ,	9.4	1
1	Titelbild: A Microstructured Graphene/Poly(N-isopropylacrylamide) Membrane for Intelligent Solar Water Evaporation (Angew. Chem. 50/2018). <i>Angewandte Chemie</i> , 2018 , 130, 16471-16471	3.6	