
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6044902/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Brassinosteroids' regulation of plant architecture. , 2022, , 43-57.		1
2	Lightâ€dependent activation of HY5 promotes mycorrhizal symbiosis in tomato by systemically regulating strigolactone biosynthesis. New Phytologist, 2022, 233, 1900-1914.	7.3	30
3	Melatonin delays darkâ€induced leaf senescence by inducing <i>miR171b</i> expression in tomato. Journal of Pineal Research, 2022, 72, .	7.4	22
4	S-Nitrosoglutathione Reductase Contributes to Thermotolerance by Modulating High Temperature-Induced Apoplastic H2O2 in Solanum lycopersicum. Frontiers in Plant Science, 2022, 13, 862649.	3.6	0
5	Exogenous Rosmarinic Acid Application Enhances Thermotolerance in Tomatoes. Plants, 2022, 11, 1172.	3.5	6
6	The <scp>miR164aâ€NAM3</scp> module confers cold tolerance by inducing ethylene production in tomato. Plant Journal, 2022, 111, 440-456.	5.7	35
7	High Nitric Oxide Concentration Inhibits Photosynthetic Pigment Biosynthesis by Promoting the Degradation of Transcription Factor HY5 in Tomato. International Journal of Molecular Sciences, 2022, 23, 6027.	4.1	6
8	Glucose sensing by regulator of G protein signaling 1 (<scp>RGS1</scp>) plays a crucial role in coordinating defense in response to environmental variation in tomato. New Phytologist, 2022, 236, 561-575.	7.3	8
9	Brassinosteroids promote starch synthesis and the implication in low-light stress tolerance in Solanum lycopersicum. Environmental and Experimental Botany, 2022, 201, 104990.	4.2	5
10	High CO ₂ ―and pathogenâ€driven expression of the carbonic anhydrase βCA3 confers basal immunity in tomato. New Phytologist, 2021, 229, 2827-2843.	7.3	26
11	Ethylene response factors 15 and 16 trigger jasmonate biosynthesis in tomato during herbivore resistance. Plant Physiology, 2021, 185, 1182-1197.	4.8	32
12	Nitrogen forms and metabolism affect plant defence to foliar and root pathogens in tomato. Plant, Cell and Environment, 2021, 44, 1596-1610.	5.7	37
13	Crosstalk between Brassinosteroid and Redox Signaling Contributes to the Activation of CBF Expression during Cold Responses in Tomato. Antioxidants, 2021, 10, 509.	5.1	16
14	The protein kinase CPK28 phosphorylates ascorbate peroxidase and enhances thermotolerance in tomato. Plant Physiology, 2021, 186, 1302-1317.	4.8	61
15	Brassinosteroid signaling integrates multiple pathways to release apical dominance in tomato. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	49
16	The phyBâ€dependent induction of HY5 promotes iron uptake by systemically activating <i>FER</i> expression. EMBO Reports, 2021, 22, e51944.	4.5	37
17	ELONGATED HYPOCOTYL 5 mediates blue light-induced starch degradation in tomato. Journal of Experimental Botany, 2021, 72, 2627-2641.	4.8	21
18	Strigolactones positively regulate abscisic acid-dependent heat and cold tolerance in tomato. Horticulture Research, 2021, 8, 237.	6.3	47

#	Article	IF	CITATIONS
19	Rosmarinic Acid Delays Tomato Fruit Ripening by Regulating Ripening-Associated Traits. Antioxidants, 2021, 10, 1821.	5.1	14
20	BRASSINAZOLE RESISTANT 1 Mediates Brassinosteroid-Induced Calvin Cycle to Promote Photosynthesis in Tomato. Frontiers in Plant Science, 2021, 12, 811948.	3.6	10
21	Crosstalk of PIF4 and DELLA modulates CBF transcript and hormone homeostasis in cold response in tomato. Plant Biotechnology Journal, 2020, 18, 1041-1055.	8.3	65
22	Brassinosteroidâ€mediated reactive oxygen species are essential for tapetum degradation and pollen fertility in tomato. Plant Journal, 2020, 102, 931-947.	5.7	55
23	Melatonin promotes metabolism of bisphenol A by enhancing glutathione-dependent detoxification in Solanum lycopersicum L. Journal of Hazardous Materials, 2020, 388, 121727.	12.4	31
24	Light-induced HY5 Functions as a Systemic Signal to Coordinate the Photoprotective Response to Light Fluctuation. Plant Physiology, 2020, 184, 1181-1193.	4.8	20
25	The Chromosome-Scale Genome of Melon Dissects Genetic Architecture of Important Agronomic Traits. IScience, 2020, 23, 101422.	4.1	22
26	The <scp>HY5</scp> and <scp>MYB15</scp> transcription factors positively regulate cold tolerance in tomato via the <scp>CBF</scp> pathway. Plant, Cell and Environment, 2020, 43, 2712-2726.	5.7	56
27	Brassinosteroids act as a positive regulator of NBR1-dependent selective autophagy in response to chilling stress in tomato. Journal of Experimental Botany, 2020, 71, 1092-1106.	4.8	56
28	Transcriptomic and genetic approaches reveal an essential role of the NAC transcription factor SINAP1 in the growth and defense response of tomato. Horticulture Research, 2020, 7, 209.	6.3	37
29	Histone acetylation recruits the SWR1 complex to regulate active DNA demethylation in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16641-16650.	7.1	73
30	Tomato <i>GLR3.3</i> and <i>GLR3.5</i> mediate cold acclimationâ€induced chilling tolerance by regulating apoplastic H ₂ O ₂ production and redox homeostasis. Plant, Cell and Environment, 2019, 42, 3326-3339.	5.7	56
31	COP9 Signalosome CSN4 and CSN5 Subunits Are Involved in Jasmonate-Dependent Defense Against Root-Knot Nematode in Tomato. Frontiers in Plant Science, 2019, 10, 1223.	3.6	16
32	Systemic Root-Shoot Signaling Drives Jasmonate-Based Root Defense against Nematodes. Current Biology, 2019, 29, 3430-3438.e4.	3.9	89
33	Glutaredoxin S25 and its interacting TGACG motif-binding factor TGA2 mediate brassinosteroid-induced chlorothalonil metabolism in tomato plants. Environmental Pollution, 2019, 255, 113256.	7.5	28
34	Role of ethylene biosynthesis and signaling in elevated CO2-induced heat stress response in tomato. Planta, 2019, 250, 563-572.	3.2	57
35	Brassinosteroids Act as a Positive Regulator of Photoprotection in Response to Chilling Stress. Plant Physiology, 2019, 180, 2061-2076.	4.8	90
36	A novel <scp>CO</scp> ₂ â€responsive systemic signaling pathway controlling plant mycorrhizal symbiosis. New Phytologist, 2019, 224, 106-116.	7.3	28

#	Article	IF	CITATIONS
37	Strigolactones positively regulate defense against root-knot nematodes in tomato. Journal of Experimental Botany, 2019, 70, 1325-1337.	4.8	59
38	SIHY5 Integrates Temperature, Light, and Hormone Signaling to Balance Plant Growth and Cold Tolerance. Plant Physiology, 2019, 179, 749-760.	4.8	71
39	BZR1 Mediates Brassinosteroid-Induced Autophagy and Nitrogen Starvation in Tomato. Plant Physiology, 2019, 179, 671-685.	4.8	114
40	A Plant Phytosulfokine Peptide Initiates Auxin-Dependent Immunity through Cytosolic Ca ²⁺ Signaling in Tomato. Plant Cell, 2018, 30, 652-667.	6.6	120
41	The <scp>bZip</scp> transcription factor <i>HY5</i> mediates <scp><i>CRY1a</i></scp> â€induced anthocyanin biosynthesis in tomato. Plant, Cell and Environment, 2018, 41, 1762-1775.	5.7	138
42	Heat Shock Factor HsfA1a ls Essential for <i>R</i> Gene-Mediated Nematode Resistance and Triggers H ₂ O ₂ Production ¹ . Plant Physiology, 2018, 176, 2456-2471.	4.8	52
43	Induction of systemic resistance in tomato against Botrytis cinerea by N-decanoyl-homoserine lactone via jasmonic acid signaling. Planta, 2018, 247, 1217-1227.	3.2	37
44	Tomato photorespiratory glycolateâ€oxidaseâ€derived H ₂ O ₂ production contributes to basal defence against <i>Pseudomonas syringae</i> . Plant, Cell and Environment, 2018, 41, 1126-1138.	5.7	28
45	Brassinosteroids act as a positive regulator for resistance against rootâ€knot nematode involving RESPIRATORY BURST OXIDASE HOMOLOGâ€dependent activation of MAPKs in tomato. Plant, Cell and Environment, 2018, 41, 1113-1125.	5.7	59
46	Tomato <i>CRY1a</i> plays a critical role in the regulation of phytohormone homeostasis, plant development, and carotenoid metabolism in fruits. Plant, Cell and Environment, 2018, 41, 354-366.	5.7	44
47	Light Signaling-Dependent Regulation of Photoinhibition and Photoprotection in Tomato. Plant Physiology, 2018, 176, 1311-1326.	4.8	85
48	Brassinosteroidâ€mediated apoplastic <scp>H₂O₂</scp> â€glutaredoxin 12/14 cascade regulates antioxidant capacity in response to chilling in tomato. Plant, Cell and Environment, 2018, 41, 1052-1064.	5.7	95
49	Phytomelatonin: Recent advances and future prospects. Journal of Pineal Research, 2018, 65, e12526.	7.4	148
50	A Method of High Throughput Monitoring Crop Physiology Using Chlorophyll Fluorescence and Multispectral Imaging. Frontiers in Plant Science, 2018, 9, 407.	3.6	44
51	Glutaredoxin GRXS16 mediates brassinosteroid-induced apoplastic H2O2 production to promote pesticide metabolism in tomato. Environmental Pollution, 2018, 240, 227-234.	7.5	37
52	BZR1 Transcription Factor Regulates Heat Stress Tolerance Through FERONIA Receptor-Like Kinase-Mediated Reactive Oxygen Species Signaling in Tomato. Plant and Cell Physiology, 2018, 59, 2239-2254.	3.1	91
53	The role of calcium-dependent protein kinase in hydrogen peroxide, nitric oxide and ABA-dependent cold acclimation. Journal of Experimental Botany, 2018, 69, 4127-4139.	4.8	73
54	HsfA1a upregulates melatonin biosynthesis to confer cadmium tolerance in tomato plants. Journal of Pineal Research, 2017, 62, e12387.	7.4	219

#	Article	IF	CITATIONS
55	Nitric oxide is involved in the oxytetracycline-induced suppression of root growth through inhibiting hydrogen peroxide accumulation in the root meristem. Scientific Reports, 2017, 7, 43096.	3.3	16
56	Crosstalk between Nitric Oxide and MPK1/2 Mediates Cold Acclimation-induced Chilling Tolerance in Tomato. Plant and Cell Physiology, 2017, 58, 1963-1975.	3.1	47
57	24-Epibrassinolide alleviates organic pollutants-retarded root elongation by promoting redox homeostasis and secondary metabolism in Cucumis sativus L. Environmental Pollution, 2017, 229, 922-931.	7.5	57
58	A novel ethylene responsive factor CitERF13 plays a role in photosynthesis regulation. Plant Science, 2017, 256, 112-119.	3.6	14
59	Importance of the mitochondrial alternative oxidase (AOX) pathway in alleviating photoinhibition in cucumber leaves under chilling injury and subsequent recovery when leaves are subjected to high light intensity. Journal of Horticultural Science and Biotechnology, 2017, 92, 31-38.	1.9	14
60	A New Strategy in Observer Modeling for Greenhouse Cucumber Seedling Growth. Frontiers in Plant Science, 2017, 8, 1297.	3.6	1
61	Detecting crop population growth using chlorophyll fluorescence imaging. Applied Optics, 2017, 56, 9762.	1.8	6
62	The critical role of autophagy in plant responses to abiotic stresses. Frontiers of Agricultural Science and Engineering, 2017, 4, 28.	1.4	9
63	Physiological and Transcriptome Responses to Combinations of Elevated CO2 and Magnesium in Arabidopsis thaliana. PLoS ONE, 2016, 11, e0149301.	2.5	19
64	Genome-Wide Identification and Expression Analysis of Calcium-dependent Protein Kinase in Tomato. Frontiers in Plant Science, 2016, 7, 469.	3.6	62
65	Brassinosteroid Ameliorates Zinc Oxide Nanoparticles-Induced Oxidative Stress by Improving Antioxidant Potential and Redox Homeostasis in Tomato Seedling. Frontiers in Plant Science, 2016, 7, 615.	3.6	84
66	Unraveling Main Limiting Sites of Photosynthesis under Below- and Above-Ground Heat Stress in Cucumber and the Alleviatory Role of Luffa Rootstock. Frontiers in Plant Science, 2016, 7, 746.	3.6	33
67	Melatonin mediates seleniumâ€induced tolerance to cadmium stress in tomato plants. Journal of Pineal Research, 2016, 61, 291-302.	7.4	211
68	Apoplastic H ₂ O ₂ plays a critical role in axillary bud outgrowth by altering auxin and cytokinin homeostasis in tomato plants. New Phytologist, 2016, 211, 1266-1278.	7.3	49
69	Involvement of an ethylene response factor in chlorophyll degradation during citrus fruit degreening. Plant Journal, 2016, 86, 403-412.	5.7	130
70	Microarray and genetic analysis reveals that csaâ€miR159b plays a critical role in abscisic acidâ€mediated heat tolerance in grafted cucumber plants. Plant, Cell and Environment, 2016, 39, 1790-1804.	5.7	52
71	Grafting cucumber onto luffa improves drought tolerance by increasing ABA biosynthesis and sensitivity. Scientific Reports, 2016, 6, 20212.	3.3	57
72	Interplay between mitogen-activated protein kinase and nitric oxide in brassinosteroid-induced pesticide metabolism in Solanum lycopersicum. Journal of Hazardous Materials, 2016, 316, 221-231.	12.4	39

#	Article	IF	CITATIONS
73	<i><scp>DWARF</scp></i> overexpression induces alteration in phytohormone homeostasis, development, architecture and carotenoid accumulation in tomato. Plant Biotechnology Journal, 2016, 14, 1021-1033.	8.3	83
74	Overexpression of a brassinosteroid biosynthetic gene Dwarf enhances photosynthetic capacity through activation of Calvin cycle enzymes in tomato. BMC Plant Biology, 2016, 16, 33.	3.6	57
75	Glutathione-mediated regulation of nitric oxide, S-nitrosothiol and redox homeostasis confers cadmium tolerance by inducing transcription factors and stress response genes in tomato. Chemosphere, 2016, 161, 536-545.	8.2	111
76	Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants. Journal of Pineal Research, 2016, 61, 457-469.	7.4	216
77	Systemic induction of photosynthesis via illumination of the shoot apex is mediated by phytochrome B. Plant Physiology, 2016, 172, pp.01202.2016.	4.8	73
78	Neglecting legumes has compromised human health and sustainable food production. Nature Plants, 2016, 2, 16112.	9.3	529
79	Role of Hormones in Plant Adaptation to Heat Stress. , 2016, , 1-21.		23
80	Interactions between 2-Cys peroxiredoxins and ascorbate in autophagosome formation during the heat stress response in <i>Solanum lycopersicum</i> . Journal of Experimental Botany, 2016, 67, 1919-1933.	4.8	34
81	Phytochrome A and B Function Antagonistically to Regulate Cold Tolerance via Abscisic Acid-Dependent Jasmonate Signaling. Plant Physiology, 2016, 170, 459-471.	4.8	216
82	Guard cell hydrogen peroxide and nitric oxide mediate elevated <scp>CO</scp> ₂ â€induced stomatal movement in tomato. New Phytologist, 2015, 208, 342-353.	7.3	95
83	Involvement of nitric oxide in the jasmonate-dependent basal defense against root-knot nematode in tomato plants. Frontiers in Plant Science, 2015, 6, 193.	3.6	57
84	Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L. Frontiers in Plant Science, 2015, 6, 601.	3.6	278
85	Tomato HsfA1a plays a critical role in plant drought tolerance by activating <i>ATG</i> genes and inducing autophagy. Autophagy, 2015, 11, 2033-2047.	9.1	166
86	The relationship between the plant-encoded RNA-dependent RNA polymerase 1 and alternative oxidase in tomato basal defense against Tobacco mosaic virus. Planta, 2015, 241, 641-650.	3.2	18
87	Salicylic acid binding of mitochondrial alphaâ€ketoglutarate dehydrogenase E2 affects mitochondrial oxidative phosphorylation and electron transport chain components and plays a role in basal defense against <i>tobacco mosaic virus</i> in tomato. New Phytologist, 2015, 205, 1296-1307.	7.3	55
88	Characterization of the promoter and extended C-terminal domain of Arabidopsis WRKY33 and functional analysis of tomato WRKY33 homologues in plant stress responses. Journal of Experimental Botany, 2015, 66, 4567-4583.	4.8	86
89	Brassinosteroids play a critical role in the regulation of pesticide metabolism in crop plants. Scientific Reports, 2015, 5, 9018.	3.3	110
90	NPR1-dependent salicylic acid signaling is not involved in elevated CO ₂ -induced heat stress tolerance in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2015, 10, e1011944.	2.4	13

#	Article	IF	CITATIONS
91	RNA-seq analysis reveals the role of red light in resistance against Pseudomonas syringae pv. tomato DC3000 in tomato plants. BMC Genomics, 2015, 16, 120.	2.8	82
92	Phosphorus and magnesium interactively modulate the elongation and directional growth of primary roots in Arabidopsis thaliana (L.) Heynh. Journal of Experimental Botany, 2015, 66, 3841-3854.	4.8	35
93	Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. Journal of Experimental Botany, 2015, 66, 2839-2856.	4.8	572
94	Enhanced photosynthetic capacity and antioxidant potential mediate brassinosteriod-induced phenanthrene stress tolerance in tomato. Environmental Pollution, 2015, 201, 58-66.	7.5	37
95	Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO2. Journal of Experimental Botany, 2015, 66, 1951-1963.	4.8	116
96	High atmospheric carbon dioxide-dependent alleviation of salt stress is linked to RESPIRATORY BURST OXIDASE 1 (<i>RBOH1</i>)-dependent H ₂ O ₂ production in tomato (<i>Solanum) Tj E</i>	Т Qq, 800 г	gB和9/Overloc
97	Application of 24-epibrassinolide decreases the susceptibility to cucumber mosaic virus in zucchini (Cucurbita pepo L). Scientia Horticulturae, 2015, 195, 116-123.	3.6	14
98	Light-induced systemic resistance in tomato plants against root-knot nematode Meloidogyne incognita. Plant Growth Regulation, 2015, 76, 167-175.	3.4	22
99	Tomato-Pseudomonas syringae interactions under elevated CO2 concentration: the role of stomata. Journal of Experimental Botany, 2015, 66, 307-316.	4.8	40
100	Role of Brassinosteroid in Plant Adaptation to Abiotic Stresses and its Interplay with Other Hormones. Current Protein and Peptide Science, 2015, 16, 462-473.	1.4	86
101	Arabidopsis LIP5, a Positive Regulator of Multivesicular Body Biogenesis, Is a Critical Target of Pathogen-Responsive MAPK Cascade in Plant Basal Defense. PLoS Pathogens, 2014, 10, e1004243.	4.7	90
102	E3 Ubiquitin Ligase CHIP and NBR1-Mediated Selective Autophagy Protect Additively against Proteotoxicity in Plant Stress Responses. PLoS Genetics, 2014, 10, e1004116.	3.5	127
103	<i>RBOH1</i> -dependent H ₂ O ₂ production and subsequent activation of MPK1/2 play an important role in acclimation-induced cross-tolerance in tomato. Journal of Experimental Botany, 2014, 65, 595-607.	4.8	129
104	Chloroplastic thioredoxin-f and thioredoxin-m1/4 play important roles in brassinosteroids-induced changes in CO2 assimilation and cellular redox homeostasis in tomato. Journal of Experimental Botany, 2014, 65, 4335-4347.	4.8	32
105	The perplexing role of autophagy in plant innate immune responses. Molecular Plant Pathology, 2014, 15, 637-645.	4.2	82
106	Role of <scp><scp>H₂O₂</scp> </scp> dynamics in brassinosteroidâ€induced stomatal closure and opening in <scp><i>S</i></scp> <i>olanum lycopersicum</i> . Plant, Cell and Environment, 2014, 37, 2036-2050.	5.7	139
107	Hydrogen peroxide mediates abscisic acidâ€induced <scp>HSP</scp> 70 accumulation and heat tolerance in grafted cucumber plants. Plant, Cell and Environment, 2014, 37, 2768-2780.	5.7	135
108	The sub/supraâ€optimal temperatureâ€induced inhibition of photosynthesis and oxidative damage in cucumber leaves are alleviated by grafting onto figleaf gourd/luffa rootstocks. Physiologia Plantarum, 2014, 152, 571-584.	5.2	39

#	Article	IF	CITATIONS
109	Effects of Fusarium oxysporum on rhizosphere microbial communities of two cucumber genotypes with contrasting Fusarium wilt resistance under hydroponic condition. European Journal of Plant Pathology, 2014, 140, 643-653.	1.7	10
110	H2O2 mediates the crosstalk of brassinosteroid and abscisic acid in tomato responses to heat and oxidative stresses. Journal of Experimental Botany, 2014, 65, 4371-4383.	4.8	257
111	Role and regulation of autophagy in heat stress responses of tomato plants. Frontiers in Plant Science, 2014, 5, 174.	3.6	162
112	Plant-Soil Feedbacks and Soil Sickness: From Mechanisms to Application in Agriculture. Journal of Chemical Ecology, 2013, 39, 232-242.	1.8	248
113	Brassinosteroids accelerate recovery of photosynthetic apparatus from cold stress by balancing the electron partitioning, carboxylation and redox homeostasis in cucumber. Physiologia Plantarum, 2013, 148, 133-145.	5.2	107
114	Clutathione biosynthesis and regeneration play an important role in the metabolism of chlorothalonil in tomato. Chemosphere, 2013, 90, 2563-2570.	8.2	52
115	Role of brassinosteroids in alleviation of phenanthrene–cadmium co-contamination-induced photosynthetic inhibition and oxidative stress in tomato. Journal of Experimental Botany, 2013, 64, 199-213.	4.8	230
116	Flexible change and cooperation between mitochondrial electron transport and cytosolic glycolysis as the basis for chilling tolerance in tomato plants. Planta, 2013, 237, 589-601.	3.2	21
117	Protein–Protein Interactions in the Regulation of WRKY Transcription Factors. Molecular Plant, 2013, 6, 287-300.	8.3	276
118	Brassinosteroid alleviates polychlorinated biphenyls-induced oxidative stress by enhancing antioxidant enzymes activity in tomato. Chemosphere, 2013, 90, 2645-2653.	8.2	92
119	NBR1-Mediated Selective Autophagy Targets Insoluble Ubiquitinated Protein Aggregates in Plant Stress Responses. PLoS Genetics, 2013, 9, e1003196.	3.5	281
120	Stimulated Leaf Dark Respiration in Tomato in an Elevated Carbon Dioxide Atmosphere. Scientific Reports, 2013, 3, 3433.	3.3	72
121	Brassinosteroids-Induced Systemic Stress Tolerance was Associated with Increased Transcripts of Several Defence-Related Genes in the Phloem in Cucumis sativus. PLoS ONE, 2013, 8, e66582.	2.5	52
122	Cytokinin-Induced Parthenocarpic Fruit Development in Tomato Is Partly Dependent on Enhanced Gibberellin and Auxin Biosynthesis. PLoS ONE, 2013, 8, e70080.	2.5	79
123	The Role of Hydrogen Peroxide and Nitric Oxide in the Induction of Plant-Encoded RNA-Dependent RNA Polymerase 1 in the Basal Defense against Tobacco Mosaic Virus. PLoS ONE, 2013, 8, e76090.	2.5	45
124	Structural and Functional Analysis of VQ Motif-Containing Proteins in Arabidopsis as Interacting Proteins of WRKY Transcription Factors Â. Plant Physiology, 2012, 159, 810-825.	4.8	216
125	Brassinosteroid improves seed germination and early development of tomato seedling under phenanthrene stress. Plant Growth Regulation, 2012, 68, 87-96.	3.4	28
126	Interaction of Brassinosteroids and Polyamines Enhances Copper Stress Tolerance in Raphanus Sativus. Journal of Experimental Botany, 2012, 63, 5659-5675.	4.8	142

#	Article	IF	CITATIONS
127	Cellular glutathione redox homeostasis plays an important role in the brassinosteroidâ€induced increase in CO ₂ assimilation in <i>Cucumis sativus</i> . New Phytologist, 2012, 194, 932-943.	7.3	120
128	Brassinosteroids induce plant tolerance against phenanthrene by enhancing degradation and detoxification in Solanum lycopersicum L Ecotoxicology and Environmental Safety, 2012, 80, 28-36.	6.0	68
129	The growth, photosynthesis and antioxidant defense responses of five vegetable crops to phenanthrene stress. Ecotoxicology and Environmental Safety, 2012, 80, 132-139.	6.0	82
130	Hydrogen peroxide functions as a secondary messenger for brassinosteroids-induced CO2 assimilation and carbohydrate metabolism in Cucumis sativus. Journal of Zhejiang University: Science B, 2012, 13, 811-823.	2.8	45
131	Benefits of brassinosteroid crosstalk. Trends in Plant Science, 2012, 17, 594-605.	8.8	271
132	A Combined Approach of High-Throughput Sequencing and Degradome Analysis Reveals Tissue Specific Expression of MicroRNAs and Their Targets in Cucumber. PLoS ONE, 2012, 7, e33040.	2.5	113
133	Brassinosteroid alleviates phenanthrene and pyrene phytotoxicity by increasing detoxification activity and photosynthesis in tomato. Chemosphere, 2012, 86, 546-555.	8.2	110
134	Interactive effects of CO2 enrichment and brassinosteroid on CO2 assimilation and photosynthetic electron transport in Cucumis sativus. Environmental and Experimental Botany, 2012, 75, 98-106.	4.2	43
135	Temperature effects on the reactive oxygen species formation and antioxidant defence in roots of two cucurbit species with contrasting root zone temperature optima. Acta Physiologiae Plantarum, 2012, 34, 713-720.	2.1	20
136	The reduction of reactive oxygen species formation by mitochondrial alternative respiration in tomato basal defense against TMV infection. Planta, 2012, 235, 225-238.	3.2	46
137	Chromium Stress Mitigation by Polyamine-Brassinosteroid Application Involves Phytohormonal and Physiological Strategies in Raphanus sativus L. PLoS ONE, 2012, 7, e33210.	2.5	159
138	Role of nitric oxide in hydrogen peroxideâ€dependent induction of abiotic stress tolerance by brassinosteroids in cucumber. Plant, Cell and Environment, 2011, 34, 347-358.	5.7	160
139	Induction of systemic stress tolerance by brassinosteroid in <i>Cucumis sativus</i> . New Phytologist, 2011, 191, 706-720.	7.3	124
140	Effects of nitrogen form on growth, CO2 assimilation, chlorophyll fluorescence, and photosynthetic electron allocation in cucumber and rice plants. Journal of Zhejiang University: Science B, 2011, 12, 126-134.	2.8	49
141	Alleviation of chilling-induced oxidative damage by salicylic acid pretreatment and related gene expression in eggplant seedlings. Plant Growth Regulation, 2011, 65, 101-108.	3.4	63
142	<i>Arabidopsis</i> Sigma Factor Binding Proteins Are Activators of the WRKY33 Transcription Factor in Plant Defense. Plant Cell, 2011, 23, 3824-3841.	6.6	260
143	Systemic Induction and Role of Mitochondrial Alternative Oxidase and Nitric Oxide in a Compatible Tomato– <i>Tobacco mosaic virus</i> Interaction. Molecular Plant-Microbe Interactions, 2010, 23, 39-48.	2.6	85
144	Induction and origin of adventitious roots from chimeras of Brassica juncea and Brassica oleracea. Plant Cell, Tissue and Organ Culture, 2010, 101, 287-294.	2.3	13

#	Article	IF	CITATIONS
145	Functional Analysis of the Arabidopsis <i>PAL</i> Gene Family in Plant Growth, Development, and Response to Environmental Stress Â. Plant Physiology, 2010, 153, 1526-1538.	4.8	668
146	ROS mediate brassinosteroids-induced plant stress responses. Plant Signaling and Behavior, 2010, 5, 532-534.	2.4	24
147	Photoprotective roles of anthocyanins in Begonia semperflorens. Plant Science, 2010, 179, 202-208.	3.6	93
148	The different responses of glutathione-dependent detoxification pathway to fungicide chlorothalonil and carbendazim in tomato leaves. Chemosphere, 2010, 79, 958-965.	8.2	49
149	Degradation of chlorpyrifos in laboratory soil and its impact on soil microbial functional diversity. Journal of Environmental Sciences, 2009, 21, 380-386.	6.1	103
150	Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. Planta, 2009, 230, 1185-1196.	3.2	232
151	Grafting of Cucumis sativus onto Cucurbita ficifolia leads to improved plant growth, increased light utilization and reduced accumulation of reactive oxygen species in chilled plants. Journal of Plant Research, 2009, 122, 529-540.	2.4	44
152	Mitochondrial nad2 gene is co-transcripted with CMS-associated orfB gene in cytoplasmic male-sterile sterile stem mustard (Brassica juncea). Molecular Biology Reports, 2009, 36, 345-351.	2.3	20
153	Genetic and heterosis analysis for important agronomic traits of Chinese vegetable mustard (Brassica) Tj ETQq	1 9.7843	14 ggBT /Ove
154	Effects of Phenylcarboxylic Acids on Mitosis, Endoreduplication and Expression of Cell Cycle-Related Genes in Roots of Cucumber (Cucumis sativus L.). Journal of Chemical Ecology, 2009, 35, 679-688.	1.8	27
155	Selective trans-Cinnamic Acid Uptake Impairs [Ca2+]cyt Homeostasis and Growth in Cucumis sativus L Journal of Chemical Ecology, 2009, 35, 1471-1477.	1.8	20
156	Effects of cucumber mosaic virus infection on electron transport and antioxidant system in chloroplasts and mitochondria of cucumber and tomato leaves. Physiologia Plantarum, 2009, 135, 246-257.	5.2	82
157	Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. Journal of Photochemistry and Photobiology B: Biology, 2009, 96, 30-37.	3.8	226
158	Effects of calcium cyanamide on soil microbial communities and Fusarium oxysporum f. sp. cucumberinum. Chemosphere, 2009, 75, 872-877.	8.2	37
159	Detached leaves of tomato differ in their photosynthetic physiological response to moderate high and low temperature stress. Scientia Horticulturae, 2009, 123, 17-22.	3.6	49
160	Impact of Light Variation on Development of Photoprotection, Antioxidants, and Nutritional Value in Lactuca sativa L Journal of Agricultural and Food Chemistry, 2009, 57, 5494-5500.	5.2	53
161	Reactive Oxygen Species Are Involved in Brassinosteroid-Induced Stress Tolerance in Cucumber Â. Plant Physiology, 2009, 150, 801-814.	4.8	640
162	Effects of Root and Foliar Applications of 24-Epibrassinolide on Fusarium Wilt and Antioxidant Metabolism in Cucumber Roots. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 1340-1345.	1.0	20

#	Article	IF	CITATIONS
163	MADS-box genes are associated with cytoplasmic homeosis in cytoplasmic male-sterile stem mustard as partially mimicked by specifically inhibiting mtETC. Plant Growth Regulation, 2008, 56, 191-201.	3.4	12
164	Decreased energy synthesis is partially compensated by a switch to sucrose synthase pathway of sucrose degradation in restricted root of tomato plants. Plant Physiology and Biochemistry, 2008, 46, 1040-1044.	5.8	16
165	Relationship between cytoplasmic male sterility and <i>SPLâ€like</i> gene expression in stem mustard. Physiologia Plantarum, 2008, 133, 426-434.	5.2	10
166	Root restriction-induced limitation to photosynthesis in tomato (Lycopersicon esculentum Mill.) leaves. Scientia Horticulturae, 2008, 117, 197-202.	3.6	30
167	Mitochondrial retrograde regulation tuning fork in nuclear genes expressions of higher plants. Journal of Genetics and Genomics, 2008, 35, 65-71.	3.9	26
168	Chill-Induced Decrease in Capacity of RuBP Carboxylation and Associated H2O2 Accumulation in Cucumber Leaves are Alleviated by Grafting onto Figleaf Gourd. Annals of Botany, 2007, 100, 839-848.	2.9	90
169	Alterations of RNA Editing for the Mitochondrial ATP9 Gene in a New orf220-type Cytoplasmic Male-sterile Line of Stem Mustard (Brassica juncea var. tumida). Journal of Integrative Plant Biology, 2007, 49, 672-677.	8.5	10
170	Low O2 supply is involved in the poor growth in root-restricted plants of tomato (Lycopersicon) Tj ETQq0 0 0 r	gBT /Overlo 4.2	ck 10 Tf 50 4
171	Adaptation of cucurbit species to changes in substrate temperature: Root growth, antioxidants, and peroxidation. Journal of Plant Biology, 2007, 50, 527-532.	2.1	17
172	Diurnal variations in gas exchange, chlorophyll fluorescence quenching and light allocation in soybean leaves: The cause for midday depression in CO2 assimilation. Scientia Horticulturae, 2006, 110, 214-218.	3.6	35
173	Different effects ofÂchilling onÂrespiration inÂleaves andÂroots ofÂcucumber (CucumisÂsativus). Plant Physiology and Biochemistry, 2006, 44, 837-843.	5.8	29
174	Effect of excess manganese on the antioxidant system in Cucumis sativus L. under two light intensities. Environmental and Experimental Botany, 2006, 58, 197-205.	4.2	73
175	Genotypic Variation of Rubisco Expression, Photosynthetic Electron Flow and Antioxidant Metabolism in the Chloroplasts of Chill-exposed Cucumber Plants. Plant and Cell Physiology, 2006, 47, 192-199.	3.1	87
176	Silicon-mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochemistry, 2005, 66, 1551-1559.	2.9	216
177	Effects of pollination and N-(2-chloro-4-pyridyl)-N-phenylurea on the expression of acid invertase in ovaries of Lagenaria leucantha. Plant Growth Regulation, 2004, 42, 263-270.	3.4	1
178	Effects of Potato Virus Y ^{NTN} Infection on Gas Exchange and Photosystem 2 Function in Leaves of Solanum tuberosum L. Photosynthetica, 2004, 42, 417-423.	1.7	39
179	Incidence of Fusarium wilt in Cucumis sativusÂL. is promoted by cinnamic acid, an autotoxin in root exudates. Plant and Soil, 2004, 263, 143-150.	3.7	128
180	Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science, 2004, 167, 527-533.	3.6	703

#	Article	IF	CITATIONS
181	Greenhouse and field cucumber genotypes use different mechanisms to protect against dark chilling. Functional Plant Biology, 2004, 31, 1215.	2.1	14
182	Expression of CycD3 is transiently increased by pollination and N-(2-chloro-4-pyridyl)-N′-phenylurea in ovaries of Lagenaria leucantha. Journal of Experimental Botany, 2003, 54, 1245-1251.	4.8	22
183	Chill-Induced Inhibition of Photosynthesis: Genotypic Variation within Cucumis sativus. Plant and Cell Physiology, 2002, 43, 1182-1188.	3.1	50
184	Effects of Simulated Acid Precipitation on Photosynthesis, Chlorophyll Fluorescence, and Antioxidative Enzymes in Cucumis sativus L Photosynthetica, 2002, 40, 331-335.	1.7	25
185	Hinoki (Chamaecyparis obtusa) bark, a substrate with anti-pathogen properties that suppress some root diseases of tomato. Scientia Horticulturae, 1999, 81, 13-24.	3.6	34