
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6044698/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insulin-sensitive obesity. American Journal of Physiology - Endocrinology and Metabolism, 2010, 299, E506-E515.	3.5	670
2	Adipocyte dysfunction, inflammation and metabolic syndrome. Reviews in Endocrine and Metabolic Disorders, 2014, 15, 277-287.	5.7	385
3	Serum Retinol-Binding Protein Is More Highly Expressed in Visceral than in Subcutaneous Adipose Tissue and Is a Marker of Intra-abdominal Fat Mass. Cell Metabolism, 2007, 6, 79-87.	16.2	360
4	Vaspin gene expression in human adipose tissue: Association with obesity and type 2 diabetes. Biochemical and Biophysical Research Communications, 2006, 339, 430-436.	2.1	303
5	MicroRNA Expression in Human Omental and Subcutaneous Adipose Tissue. PLoS ONE, 2009, 4, e4699.	2.5	290
6	Local proliferation of macrophages in adipose tissue during obesity-induced inflammation. Diabetologia, 2014, 57, 562-571.	6.3	193
7	Autocrine IGF-1 Action in Adipocytes Controls Systemic IGF-1 Concentrations and Growth. Diabetes, 2008, 57, 2074-2082.	0.6	113
8	WISP1 Is a Novel Adipokine Linked to Inflammation in Obesity. Diabetes, 2015, 64, 856-866.	0.6	107
9	Elevated autophagy gene expression in adipose tissue of obese humans: A potential non-cell-cycle-dependent function of E2F1. Autophagy, 2015, 11, 2074-2088.	9.1	90
10	Visfatin: Gene expression in isolated adipocytes and sequence analysis in obese WOKW rats compared with lean control rats. Biochemical and Biophysical Research Communications, 2005, 332, 1070-1072.	2.1	87
11	Dissociation Between Brown Adipose Tissue ¹⁸ F-FDG Uptake and Thermogenesis in Uncoupling Protein 1–Deficient Mice. Journal of Nuclear Medicine, 2017, 58, 1100-1103.	5.0	73
12	Thyroid hormone status defines brown adipose tissue activity and browning of white adipose tissues in mice. Scientific Reports, 2016, 6, 38124.	3.3	71
13	Extended longevity and insulin signaling in adipose tissue. Experimental Gerontology, 2005, 40, 878-883.	2.8	69
14	Hedgehog signaling is a potent regulator of liver lipid metabolism and reveals a GLI-code associated with steatosis. ELife, 2016, 5, .	6.0	61
15	Bone morphogenetic protein 2 (<i>BMP2</i>) may contribute to partition of energy storage into visceral and subcutaneous fat depots. Obesity, 2016, 24, 2092-2100.	3.0	53
16	Hypoxia-inducible factor 3A gene expression and methylation in adipose tissue is related to adipose tissue dysfunction. Scientific Reports, 2016, 6, 27969.	3.3	49
17	micro <scp>RNA</scp> â€379 couples glucocorticoid hormones to dysfunctional lipid homeostasis. EMBO Journal, 2015, 34, 344-360.	7.8	43
18	The role of nerve inflammation and exogenous iron load in experimental peripheral diabetic neuropathy (PDN). Metabolism: Clinical and Experimental, 2016, 65, 391-405.	3.4	40

#	Article	IF	CITATIONS
19	ldentification of a regulatory pathway inhibiting adipogenesis via RSPO2. Nature Metabolism, 2022, 4, 90-105.	11.9	39
20	Leptin dose-dependently decreases atherosclerosis by attenuation of hypercholesterolemia and induction of adiponectin. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 113-120.	3.8	36
21	A novel thermoregulatory role for <scp>PDE</scp> 10A in mouse and human adipocytes. EMBO Molecular Medicine, 2016, 8, 796-812.	6.9	34
22	PPP2R5C Couples Hepatic Glucose and Lipid Homeostasis. PLoS Genetics, 2015, 11, e1005561.	3.5	33
23	Genome Wide Meta-analysis Highlights the Role of Genetic Variation in RARRES2 in the Regulation of Circulating Serum Chemerin. PLoS Genetics, 2014, 10, e1004854.	3.5	31
24	Identification of genetic loci associated with different responses to high-fat diet-induced obesity in C57BL/6N and C57BL/6J substrains. Physiological Genomics, 2014, 46, 377-384.	2.3	31
25	Leptin Within the Subphysiological to Physiological Range Dose Dependently Improves Male Reproductive Function in an Obesity Mouse Model. Endocrinology, 2016, 157, 2461-2468.	2.8	30
26	ASK1 (MAP3K5) is transcriptionally upregulated by E2F1 in adipose tissue in obesity, molecularly defining a human dys-metabolic obese phenotype. Molecular Metabolism, 2017, 6, 725-736.	6.5	30
27	The Effect of <i>Wolffia globosa</i> Mankai, a Green Aquatic Plant, on Postprandial Glycemic Response: A Randomized Crossover Controlled Trial. Diabetes Care, 2019, 42, 1162-1169.	8.6	30
28	The polygenetically inherited metabolic syndrome of WOKW rats is associated with insulin resistance and altered gene expression in adipose tissue. Diabetes/Metabolism Research and Reviews, 2006, 22, 146-154.	4.0	28
29	The Obesity-Susceptibility Gene TMEM18 Promotes Adipogenesis through Activation of PPARG. Cell Reports, 2020, 33, 108295.	6.4	28
30	ADCY5 Gene Expression in Adipose Tissue Is Related to Obesity in Men and Mice. PLoS ONE, 2015, 10, e0120742.	2.5	28
31	Triplet repeat in the <i>Repin1</i> 3′â€untranslated region on rat chromosome 4 correlates with facets of the metabolic syndrome. Diabetes/Metabolism Research and Reviews, 2007, 23, 406-410.	4.0	27
32	Accumulation of distinct persistent organic pollutants is associated with adipose tissue inflammation. Science of the Total Environment, 2020, 748, 142458.	8.0	27
33	Liver-Restricted Repin1 Deficiency Improves Whole-Body Insulin Sensitivity, Alters Lipid Metabolism, and Causes Secondary Changes in Adipose Tissue in Mice. Diabetes, 2014, 63, 3295-3309.	0.6	24
34	The Role of Iron and Nerve Inflammation in Diabetes Mellitus Type 2-Induced Peripheral Neuropathy. Neuroscience, 2019, 406, 496-509.	2.3	18
35	NPY1R-targeted peptide-mediated delivery of a dual PPARα/γ agonist to adipocytes enhances adipogenesis and prevents diabetes progression. Molecular Metabolism, 2020, 31, 163-180.	6.5	17
36	Phenotypic and genetic analyses of subcongenic BB.SHR rat lines shorten the region on chromosome 4 bearing gene(s) for underlying facets of metabolic syndrome. Physiological Genomics, 2004, 18, 325-330.	2.3	15

#	Article	IF	CITATIONS
37	Distinct abdominal and gluteal adipose tissue transcriptome signatures are altered by exercise training in African women with obesity. Scientific Reports, 2020, 10, 10240.	3.3	15
38	HLA Class II Allele Analyses Implicate Common Genetic Components in Type 1 and Non–Insulin-Treated Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e245-e254.	3.6	15
39	Diabetes per se and metabolic state influence gene expression in tissue-dependent manner of BB/OK rats. Diabetes/Metabolism Research and Reviews, 2005, 21, 281-287.	4.0	14
40	Tart Cherry Juice and Seeds Affect Pro-Inflammatory Markers in Visceral Adipose Tissue of High-Fat Diet Obese Rats. Molecules, 2021, 26, 1403.	3.8	14
41	Genetic variation in the multifunctional transcription factor Yy1 and type 1 diabetes mellitus in the BB rat. Molecular Genetics and Metabolism, 2004, 82, 255-259.	1.1	13
42	Alleles on Rat Chromosome 4 (<i>D4Got41â€Fabp1/Tacr1</i>) Regulate Subphenotypes of Obesity. Obesity, 2005, 13, 589-595.	4.0	11
43	The role of dietary non-heme iron load and peripheral nerve inflammation in the development of peripheral neuropathy (PN) in obese non-diabetic leptin-deficient <i>ob/ob</i> mice. Neurological Research, 2019, 41, 341-353.	1.3	11
44	Leptin Receptor Compound Heterozygosity in Humans and Animal Models. International Journal of Molecular Sciences, 2021, 22, 4475.	4.1	11
45	Congenic mapping of type 1 diabetes—protective gene(s) in an interval of 4Mb on rat chromosome 6q32. Biochemical and Biophysical Research Communications, 2004, 323, 388-394.	2.1	10
46	Diabetes Type 1 Negatively Influences Leydig Cell Function in Rats, Which is Partially Reversible By Insulin Treatment. Endocrinology, 2021, 162, .	2.8	10
47	Leptin counteracts hypothermia in hypothyroidism through its pyrexic effects and by stabilizing serum thyroid hormone levels. Molecular Metabolism, 2021, 54, 101348.	6.5	9
48	Gene expression profiling in adipose tissue of Sprague Dawley rats identifies olfactory receptor 984 as a potential obesity treatment target. Biochemical and Biophysical Research Communications, 2018, 505, 801-806.	2.1	6
49	Tamoxifen treatment causes early hepatic insulin resistance. Acta Diabetologica, 2020, 57, 495-498.	2.5	6
50	Treatment-Induced Neuropathy in Diabetes (TIND)—Developing a Disease Model in Type 1 Diabetic Rats. International Journal of Molecular Sciences, 2021, 22, 1571.	4.1	6
51	Effects of Whole-Body Adenylyl Cyclase 5 (Adcy5) Deficiency on Systemic Insulin Sensitivity and Adipose Tissue. International Journal of Molecular Sciences, 2021, 22, 4353.	4.1	6
52	ls there an autoimmune process in bone? Gene expression studies in diabetic and nondiabetic BB rats as well as BB rat-related and -unrelated rat strains. Physiological Genomics, 2006, 24, 59-64.	2.3	5
53	A novel compound heterozygous leptin receptor mutation causes more severe obesity than in Lepr mice. Journal of Lipid Research, 2021, 62, 100105.	4.2	5
54	Leptin promotes adipocytes survival in non-vascularized fat grafting via perfusion increase. Microvascular Research, 2021, 135, 104131.	2.5	5

#	Article	IF	CITATIONS
55	Myeloid Cell–Specific IL-4 Receptor Knockout Partially Protects from Adipose Tissue Inflammation. Journal of Immunology, 2021, 207, 3081-3089.	0.8	5
56	Metabolic effects of genetic variation in the human REPIN1 gene. International Journal of Obesity, 2019, 43, 821-831.	3.4	4
57	Leptin Improves Parameters of Brown Adipose Tissue Thermogenesis in Lipodystrophic Mice. Nutrients, 2021, 13, 2499.	4.1	4
58	A Human REPIN1 Gene Variant: Genetic Risk Factor for the Development of Nonalcoholic Fatty Liver Disease. Clinical and Translational Gastroenterology, 2020, 11, e00114.	2.5	3
59	Leptin restores markers of female fertility in lipodystrophy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 3292-3297.	3.8	2
60	Ramipril Reduces Acylcarnitines and Distinctly Increases Angiotensin-Converting Enzyme 2 Expression in Lungs of Rats. Metabolites, 2022, 12, 293.	2.9	2
61	Intrinsic Exercise Capacity Affects Glycine and Angiotensin-Converting Enzyme 2 (ACE2) Levels in Sedentary and Exercise Trained Rats. Metabolites, 2022, 12, 548.	2.9	2
62	COMP-Ang-1 Improves Glucose Uptake in db/db Mice with Type 2 Diabetes. Hormone and Metabolic Research, 2020, 52, 685-688.	1.5	0
63	The adipokine WISP1 is decreased in human and murine chronic kidney disease due to urinary and dialysate losses. Diabetologie Und Stoffwechsel, 2022, , .	0.0	0