
Julie M Allen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6044480/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Population genomics of Monadenia (Gastropoda: Stylommatophora: Xanthonychidae) land snails reveals structuring but gene-flow across distinct species and morphotypes. Conservation Genetics, 2022, 23, 299-311.	1.5	1

Phylogenetics and hostâ \in specificity of the megaâ \in diverse louse genus <i>Myrsidea </i> (Amblycera:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

3	Long-distance dispersal of pigeons and doves generated new ecological opportunities for host-switching and adaptive radiation by their parasites. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20220042.	2.6	13
4	Disentangling lousy relationships: Comparative phylogenomics of two sucking louse lineages parasitizing chipmunks. Molecular Phylogenetics and Evolution, 2021, 155, 106998.	2.7	3
5	Integrative analysis of DNA, macroscopic remains and stable isotopes of dog coprolites to reconstruct community diet. Scientific Reports, 2021, 11, 3113.	3.3	12
6	Ancient DNA from the extinct Haitian cave-rail (<i>Nesotrochis steganinos</i>) suggests a biogeographic connection between the Caribbean and Old World. Biology Letters, 2021, 17, 20200760.	2.3	11
7	Spatial phylogenetics of butterflies in relation to environmental drivers and angiosperm diversity across North America. IScience, 2021, 24, 102239.	4.1	22
8	Systematics and conservation of an endemic radiation of <i>Accipiter</i> hawks in the Caribbean islands. Auk, 2021, 138, .	1.4	9
9	Human Health, Interagency Coordination, and the Need for Biodiversity Data. BioScience, 2020, 70, 527-527.	4.9	2
10	Ancient DNA and high-resolution chronometry reveal a long-term human role in the historical diversity and biogeography of the Bahamian hutia. Scientific Reports, 2020, 10, 1373.	3.3	20
11	Transcriptomics illuminate the phylogenetic backbone of tiger beetles. Biological Journal of the Linnean Society, 2020, 129, 740-751.	1.6	16
12	Spatial phylogenetics of the North American flora. Journal of Systematics and Evolution, 2020, 58, 393-405.	3.1	39
13	Extensive in situ radiation of feather lice on tinamous. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20193005.	2.6	5
14	For common community phylogenetic analyses, go ahead and use synthesis phylogenies. Ecology, 2019, 100, e02788.	3.2	80
15	Rates of niche and phenotype evolution lag behind diversification in a temperate radiation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10874-10882.	7.1	115
16	Extensive host-switching of avian feather lice following the Cretaceous-Paleogene mass extinction event. Communications Biology, 2019, 2, 445.	4.4	20
17	Impacts of Inference Method and Data set Filtering on Phylogenomic Resolution in a Rapid Radiation of Ground Squirrels (Xerinae: Marmotini). Systematic Biology, 2019, 68, 298-316.	5.6	33
18	Genomic sequence capture of haemosporidian parasites: Methods and prospects for enhanced study of host–parasite evolution. Molecular Ecology Resources, 2019, 19, 400-410.	4.8	16

JULIE M ALLEN

#	Article	IF	CITATIONS
19	Biodiversity synthesis across the green branches of the tree of life. Nature Plants, 2019, 5, 11-13.	9.3	19
20	Spatial Phylogenetics of Florida Vascular Plants: The Effects of Calibration and Uncertainty on Diversity Estimates. IScience, 2019, 11, 57-70.	4.1	41
21	Fully automated sequence alignment methods are comparable to, and much faster than, traditional methods in large data sets: an example with hepatitis B virus. PeerJ, 2019, 7, e6142.	2.0	3
22	Host and parasite morphology influence congruence between host and parasite phylogenies. International Journal for Parasitology, 2018, 48, 641-648.	3.1	12
23	Integrating phylogenomic and population genomic patterns in avian lice provides a more complete picture of parasite evolution. Evolution; International Journal of Organic Evolution, 2018, 72, 95-112.	2.3	22
24	Phylogenomics and the evolution of hemipteroid insects. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12775-12780.	7.1	275
25	Simultaneous radiation of bird and mammal lice following the K-Pg boundary. Biology Letters, 2018, 14, 20180141.	2.3	33
26	aTRAM 2.0: An Improved, Flexible Locus Assembler for NGS Data. Evolutionary Bioinformatics, 2018, 14, 117693431877454.	1.2	68
27	Composition and distribution of lice (Insecta: Phthiraptera) on Colombian and Peruvian birds: New data on louse-host association in the Neotropics. Biodiversity Data Journal, 2018, 6, e21635.	0.8	8
28	Primates, Lice and Bacteria: Speciation and Genome Evolution in the Symbionts of Hominid Lice. Molecular Biology and Evolution, 2017, 34, 1743-1757.	8.9	51
29	Phylogenomics from Whole Genome Sequences Using aTRAM. Systematic Biology, 2017, 66, syw105.	5.6	47
30	Phylogenomics using Target-restricted Assembly Resolves Intra-generic Relationships of Parasitic Lice (Phthiraptera: <i>Columbicola</i>). Systematic Biology, 2017, 66, syx027.	5.6	22
31	Anchored Hybrid Enrichment-Based Phylogenomics of Leafhoppers and Treehoppers (Hemiptera:) Tj ETQq1 1 0.	784314 rg 1.7	BT /Overlock
32	Two Bacterial Genera, Sodalis and Rickettsia, Associated with the Seal Louse Proechinophthirus fluctus (Phthiraptera: Anoplura). Applied and Environmental Microbiology, 2016, 82, 3185-3197.	3.1	63
33	Unlocking the black box of feather louse diversity: A molecular phylogeny of the hyper-diverse genus Brueelia. Molecular Phylogenetics and Evolution, 2016, 94, 737-751.	2.7	62
34	Effects of 16S rDNA sampling on estimates of the number of endosymbiont lineages in sucking lice. PeerJ, 2016, 4, e2187.	2.0	14
35	Data supporting a molecular phylogeny of the hyper-diverse genus Brueelia. Data in Brief, 2015, 5, 1078-1091.	1.0	6
36	aTRAM - automated target restricted assembly method: a fast method for assembling loci across divergent taxa from next-generation sequencing data. BMC Bioinformatics, 2015, 16, 98.	2.6	78

JULIE M ALLEN

#	Article	IF	CITATIONS
37	Novel Primers From Informative Nuclear Loci for Louse Molecular Phylogenetics (Insecta:) Tj ETQq1 1 0.784314 rg	gBT /Overl	ock 10 Tf 50
38	Genome Sequence of <i>Candidatus</i> Riesia pediculischaeffi, Endosymbiont of Chimpanzee Lice, and Genomic Comparison of Recently Acquired Endosymbionts from Human and Chimpanzee Lice. G3: Genes, Genomes, Genetics, 2014, 4, 2189-2195.	1.8	30
39	Primate <scp>DNA</scp> suggests longâ€ŧerm stability of an African rainforest. Ecology and Evolution, 2012, 2, 2829-2842.	1.9	13
40	Microsatellite loci for testing temporal changes in the population genetics of the Florida mouse (Podomys floridanus). Conservation Genetics Resources, 2011, 3, 135-139.	0.8	1
41	Mutational Meltdown in Primary Endosymbionts: Selection Limits Muller's Ratchet. PLoS ONE, 2009, 4, e4969.	2.5	43
42	Evolutionary Relationships of "Candidatus Riesia spp.,―Endosymbiotic Enterobacteriaceae Living within Hematophagous Primate Lice. Applied and Environmental Microbiology, 2007, 73, 1659-1664.	3.1	90