
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6044453/publications.pdf Version: 2024-02-01

Δέτερ Ερτι

#	Article	IF	CITATIONS
1	Fingerprinting Metabolic Activity and Tissue Integrity of 3D Lung Cancer Spheroids under Gold Nanowire Treatment. Cells, 2022, 11, 478.	4.1	6
2	Screening for Best Neuronal-Glial Differentiation Protocols of Neuralizing Agents Using a Multi-Sized Microfluidic Embryoid Body Array. Pharmaceutics, 2022, 14, 339.	4.5	0
3	Recent Advances in Additive Manufacturing and 3D Bioprinting for Organs-On-A-Chip and Microphysiological Systems. Frontiers in Bioengineering and Biotechnology, 2022, 10, 837087.	4.1	15
4	Microscale Perfusionâ€Based Cultivation for <i>Pichia pastoris</i> Clone Screening Enables Accelerated and Optimized Recombinant Protein Production Processes. Biotechnology Journal, 2021, 16, e2000215.	3.5	7
5	Establishment of a human three-dimensional chip-based chondro-synovial coculture joint model for reciprocal cross talk studies in arthritis research. Lab on A Chip, 2021, 21, 4128-4143.	6.0	26
6	Monitoring the neurotransmitter release of human midbrain organoids using a redox cycling microsensor as a novel tool for personalized Parkinson's disease modelling and drug screening. Analyst, The, 2021, 146, 2358-2367.	3.5	22
7	A Fast Alternative to Soft Lithography for the Fabrication of Organâ€onâ€aâ€Chip Elastomericâ€Based Devices and Microactuators. Advanced Science, 2021, 8, 2003273.	11.2	19
8	A Microfluidic Multisize Spheroid Array for Multiparametric Screening of Anticancer Drugs and Blood–Brain Barrier Transport Properties. Advanced Science, 2021, 8, e2004856.	11.2	46
9	A Decade of Organs-on-a-Chip Emulating Human Physiology at the Microscale: A Critical Status Report on Progress in Toxicology and Pharmacology. Micromachines, 2021, 12, 470.	2.9	23
10	Microfluidic and Lab-on-a-Chip Systems for Cutaneous Wound Healing Studies. Pharmaceutics, 2021, 13, 793.	4.5	15
11	Measurement of respiration and acidification rates of mammalian cells in thermoplastic microfluidic devices. Sensors and Actuators B: Chemical, 2021, 334, 129664.	7.8	27
12	A combined microfluidic deep learning approach for lung cancer cell high throughput screening toward automatic cancer screening applications. Scientific Reports, 2021, 11, 9804.	3.3	30
13	Breaking the Third Wall: Implementing 3D-Printing Techniques to Expand the Complexity and Abilities of Multi-Organ-on-a-Chip Devices. Micromachines, 2021, 12, 627.	2.9	23
14	Dependence of mitochondrial function on the filamentous actin cytoskeleton in cultured mesenchymal stem cells treated with cytochalasin B. Journal of Bioscience and Bioengineering, 2021, 132, 310-320.	2.2	3
15	A microfluidic microparticle-labeled impedance sensor array for enhancing immunoassay sensitivity. Analyst, The, 2021, 146, 3289-3298.	3.5	9
16	A microfluidic impedance-based extended infectivity assay: combining retroviral amplification and cytopathic effect monitoring on a single lab-on-a-chip platform. Lab on A Chip, 2021, 21, 1364-1372.	6.0	5
17	Bridging the academic–industrial gap: application of an oxygen and pH sensor-integrated lab-on-a-chip in nanotoxicology. Lab on A Chip, 2021, 21, 4237-4248.	6.0	19
18	Cytotoxicity, Retention, and Anti-inflammatory Effects of a CeO ₂ Nanoparticle-Based Supramolecular Complex in a 3D Liver Cell Culture Model. ACS Pharmacology and Translational Science, 2021, 4, 101-106.	4.9	6

#	Article	IF	CITATIONS
19	Gold Nanowires/Fibrin Nanostructure as Microfluidics Platforms for Enhancing Stem Cell Differentiation: Bio-AFM Study. Micromachines, 2020, 11, 50.	2.9	23
20	Emerging Biosensor Trends in Organ-on-a-Chip. Advances in Biochemical Engineering/Biotechnology, 2020, , 343-354.	1.1	13
21	An on-chip wound healing assay fabricated by xurography for evaluation of dermal fibroblast cell migration and wound closure. Scientific Reports, 2020, 10, 16192.	3.3	29
22	Monitoring tissue-level remodelling during inflammatory arthritis using a three-dimensional synovium-on-a-chip with non-invasive light scattering biosensing. Lab on A Chip, 2020, 20, 1461-1471.	6.0	39
23	Stiffness Matters: Fine-Tuned Hydrogel Elasticity Alters Chondrogenic Redifferentiation. Frontiers in Bioengineering and Biotechnology, 2020, 8, 373.	4.1	60
24	Downscaling screening cultures in a multifunctional bioreactor arrayâ€onâ€aâ€chip for speeding up optimization of yeastâ€based lactic acid bioproduction. Biotechnology and Bioengineering, 2020, 117, 2046-2057.	3.3	7
25	A lab-on-a-chip system with an embedded porous membrane-based impedance biosensor array for nanoparticle risk assessment on placental Bewo trophoblast cells. Sensors and Actuators B: Chemical, 2020, 312, 127946.	7.8	34
26	PDMS Nano-Modified Scaffolds for Improvement of Stem Cells Proliferation and Differentiation in Microfluidic Platform. Nanomaterials, 2020, 10, 668.	4.1	36
27	FTIR spectroscopy as a novel analytical approach for investigation of glucose transport and glucose transport inhibition studies in transwell in vitro barrier models. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 237, 118388.	3.9	1
28	Latest Trends in Biosensing for Microphysiological Organs-on-a-Chip and Body-on-a-Chip Systems. Biosensors, 2019, 9, 110.	4.7	71
29	The Usual Suspects 2019: of Chips, Droplets, Synthesis, and Artificial Cells. Micromachines, 2019, 10, 285.	2.9	3
30	Monitoring transient cell-to-cell interactions in a multi-layered and multi-functional allergy-on-a-chip system. Lab on A Chip, 2019, 19, 1916-1921.	6.0	12
31	Effect of Spheroidal Age on Sorafenib Diffusivity and Toxicity in a 3D HepC2 Spheroid Model. Scientific Reports, 2019, 9, 4863.	3.3	52
32	Oxygen Management at the Microscale: A Functional Biochip Material with Long-Lasting and Tunable Oxygen Scavenging Properties for Cell Culture Applications. ACS Applied Materials & Interfaces, 2019, 11, 9730-9739.	8.0	42
33	Optimized plasma-assisted bi-layer photoresist fabrication protocol for high resolution microfabrication of thin-film metal electrodes on porous polymer membranes. MethodsX, 2019, 6, 2606-2613.	1.6	4
34	Tomorrow today: organ-on-a-chip advances towards clinically relevant pharmaceutical and medical in vitro models. Current Opinion in Biotechnology, 2019, 55, 81-86.	6.6	81
35	Combinatorial in Vitro and in Silico Approach To Describe Shear-Force Dependent Uptake of Nanoparticles in Microfluidic Vascular Models. Analytical Chemistry, 2018, 90, 3651-3655.	6.5	14
36	Next-Generation Live-Cell Microarray Technologies. Methods in Molecular Biology, 2018, 1771, 3-8.	0.9	1

#	Article	IF	CITATIONS
37	Recent advances in microfluidic technologies for cell-to-cell interaction studies. Lab on A Chip, 2018, 18, 249-270.	6.0	219
38	Nextâ€Generation Magnetic Nanocomposites: Cytotoxic and Genotoxic Effects of Coated and Uncoated Ferric Cobalt Boron (FeCoB) Nanoparticles <i>In Vitro</i> . Basic and Clinical Pharmacology and Toxicology, 2018, 122, 355-363.	2.5	12
39	Small Force, Big Impact: Next Generation Organ-on-a-Chip Systems Incorporating Biomechanical Cues. Frontiers in Physiology, 2018, 9, 1417.	2.8	66
40	Engineering of three-dimensional pre-vascular networks within fibrin hydrogel constructs by microfluidic control over reciprocal cell signaling. Biomicrofluidics, 2018, 12, 042216.	2.4	39
41	A Self-Assembled Antifouling Nano-Biointerface for the Generation of Spheroids. Methods in Molecular Biology, 2018, 1771, 251-258.	0.9	1
42	Every Breath You Take: Non-invasive Real-Time Oxygen Biosensing in Two- and Three-Dimensional Microfluidic Cell Models. Frontiers in Physiology, 2018, 9, 815.	2.8	66
43	Optimized alamarBlue assay protocol for drug dose-response determination of 3D tumor spheroids. MethodsX, 2018, 5, 781-787.	1.6	44
44	Microfluidic Migration and Wound Healing Assay Based on Mechanically Induced Injuries of Defined and Highly Reproducible Areas. Analytical Chemistry, 2017, 89, 2326-2333.	6.5	42
45	04.19â€3D synovial organoid culture reveals cellular mechanisms of tissue formation and inflammatory remodelling. , 2017, , .		0
46	Development of a Multifunctional Nanobiointerface Based on Self-Assembled Fusion-Protein rSbpA/ZZ for Blood Cell Enrichment and Phenotyping. ACS Applied Materials & Interfaces, 2017, 9, 34423-34434.	8.0	4
47	A comparative study of five physiological key parameters between four different human trophoblast-derived cell lines. Scientific Reports, 2017, 7, 5892.	3.3	119
48	Simultaneous Determination of Oxygen and pH Inside Microfluidic Devices Using Core–Shell Nanosensors. Analytical Chemistry, 2016, 88, 9796-9804.	6.5	40
49	Cell Microarrays for Biomedical Applications. Methods in Molecular Biology, 2016, 1368, 273-291.	0.9	10
50	Microfluidic Impedimetric Cell Regeneration Assay to Monitor the Enhanced Cytotoxic Effect of Nanomaterial Perfusion. Biosensors, 2015, 5, 736-749.	4.7	40
51	Automated, Miniaturized, and Integrated Quality Control-on-Chip (QC-on-a-Chip) for Cell-Based Cancer Therapy Applications. Frontiers in Materials, 2015, 2, .	2.4	22
52	Recent advances and future applications of microfluidic live-cell microarrays. Biotechnology Advances, 2015, 33, 948-961.	11.7	57
53	Zirconium dioxide nanolayer passivated impedimetric sensors for cell-based assays. Sensors and Actuators B: Chemical, 2015, 213, 35-44.	7.8	21
54	Anisotropic Crystalline Protein Nanolayers as Multiâ€Functional Biointerface for Patterned Coâ€Cultures of Adherent and Nonâ€Adherent Cells in Microfluidic Devices. Advanced Materials Interfaces, 2015, 2, 1400309.	3.7	16

#	Article	IF	CITATIONS
55	Multi-layered, membrane-integrated microfluidics based on replica molding of a thiol–ene epoxy thermoset for organ-on-a-chip applications. Lab on A Chip, 2015, 15, 4542-4554.	6.0	98
56	Microfluidic platforms for advanced risk assessments of nanomaterials. Nanotoxicology, 2015, 9, 381-395.	3.0	47
57	Microfluidic Platform for Multiplexed Cell Sampling and Time-Resolved SPR-Based Cytokine Sensing. IFMBE Proceedings, 2015, , 785-788.	0.3	4
58	Crystalline Bacterial Protein Nanolayers for Cell Micropatterning. IFMBE Proceedings, 2015, , 337-340.	0.3	2
59	Recent Advances of Biologically Inspired 3D Microfluidic Hydrogel Cell Culture Systems. HSOA Journal of Cell Biology & Cell Metabolism, 2015, 2, 1-14.	0.2	9
60	Lab-on-a-chip technologies for stem cell analysis. Trends in Biotechnology, 2014, 32, 245-253.	9.3	110
61	Influence of HepG2 cell shape on nanoparticle uptake. Microscopy Research and Technique, 2014, 77, 560-565.	2.2	8
62	Monitoring cellular stress responses using integrated high-frequency impedance spectroscopy and time-resolved ELISA. Analyst, The, 2014, 139, 5271-5282.	3.5	14
63	Exploitation of S-Layer Anisotropy: pH-Dependent Nanolayer Orientation for Cellular Micropatterning. ACS Nano, 2013, 7, 8020-8030.	14.6	29
64	Microfluidic oxygen imaging using integrated optical sensor layers and a color camera. Lab on A Chip, 2013, 13, 1593.	6.0	83
65	Standardization of microfluidic cell cultures using integrated organic photodiodes and electrode arrays. Lab on A Chip, 2013, 13, 785-797.	6.0	28
66	Nanobiotechnology advanced antifouling surfaces for the continuous electrochemical monitoring of glucose in whole blood using a lab-on-a-chip. Lab on A Chip, 2013, 13, 1780.	6.0	71
67	Monitoring Dynamic Interactions of Tumor Cells with Tissue and Immune Cells in a Lab-on-a-Chip. Analytical Chemistry, 2013, 85, 11471-11478.	6.5	39
68	Characterization of Double Layer Alterations Induced by Charged Particles and Protein–Membrane Interactions Using Contactless Impedance Spectroscopy. Journal of Physical Chemistry B, 2012, 116, 10461-10469.	2.6	5
69	Improving the measurement sensitivity of interdigital dielectric capacitors (IDC) by optimizing the dielectric property of the homogeneous passivation layer. Sensors and Actuators B: Chemical, 2012, 162, 418-424.	7.8	7
70	Rapid liposome quality assessment using a lab-on-a-chip. Lab on A Chip, 2011, 11, 2753.	6.0	16
71	3D numerical simulation of a lab-on-a-chip—increasing measurement sensitivity of interdigitated capacitors by passivation optimization. Lab on A Chip, 2011, 11, 1318.	6.0	20
72	Monitoring cellular stress responses to nanoparticles using a lab-on-a-chip. Lab on A Chip, 2011, 11, 2551.	6.0	45

#	Article	IF	CITATIONS
73	Oxygen imaging in microfluidic devices with optical sensors applying color cameras. Procedia Engineering, 2010, 5, 456-459.	1.2	8
74	Development of a Disposable Microfluidic Biochip for Multiparameter Cell Population Measurements. Analytical Chemistry, 2009, 81, 8503-8512.	6.5	38
75	Microfluidic Systems for Pathogen Sensing: A Review. Sensors, 2009, 9, 4804-4823.	3.8	239
76	Detection of viruses with molecularly imprinted polymers integrated on a microfluidic biochip using contact-less dielectric microsensors. Lab on A Chip, 2009, 9, 3549.	6.0	89
77	Microplate-Compatible Biamperometry Array for Parallel 48-Channel Amperometric or Coulometric Measurements. Analytical Chemistry, 2008, 80, 2988-2992.	6.5	7
78	Development of a microfluidic biochip for online monitoring of fungal biofilm dynamics. Lab on A Chip, 2007, 7, 1723.	6.0	67
79	Capillary Electrophoresis Chips with a Sheath-Flow Supported Electrochemical Detection System. Analytical Chemistry, 2004, 76, 3749-3755.	6.5	89
80	Rapid identification of viable Escherichia coli subspecies with an electrochemical screen-printed biosensor array. Biosensors and Bioelectronics, 2003, 18, 907-916.	10.1	71