List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6044262/publications.pdf Version: 2024-02-01

		38738	17104
181	16,818	50	122
papers	citations	h-index	g-index
192	192	192	21729
all docs	docs citations	times ranked	citing authors

FRIC D RROWN

#	Article	IF	CITATIONS
1	New potentiators of ineffective antibiotics: Targeting the Gram-negative outer membrane to overcome intrinsic resistance. Current Opinion in Chemical Biology, 2022, 66, 102099.	6.1	37
2	Antibacterial Activity of Metergoline Analogues: Revisiting the Ergot Alkaloid Scaffold for Antibiotic Discovery. ACS Medicinal Chemistry Letters, 2022, 13, 284-291.	2.8	6
3	Transparent and Highly Flexible Hierarchically Structured Polydimethylsiloxane Surfaces Suppress Bacterial Attachment and Thrombosis Under Static and Dynamic Conditions. Small, 2022, 18, e2108112.	10.0	4
4	Preclinical Development of Pentamidine Analogs Identifies a Potent and Nontoxic Antibiotic Adjuvant. ACS Infectious Diseases, 2022, 8, 768-777.	3.8	13
5	Phage–antibiotic combinations: a promising approach to constrain resistance evolution in bacteria. Annals of the New York Academy of Sciences, 2021, 1496, 23-34.	3.8	19
6	Systems-Level Chemical Biology to Accelerate Antibiotic Drug Discovery. Accounts of Chemical Research, 2021, 54, 1909-1920.	15.6	15
7	Physicochemical and Structural Parameters Contributing to the Antibacterial Activity and Efflux Susceptibility of Small-Molecule Inhibitors of Escherichia coli. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	9
8	Chemical Screen for Vancomycin Antagonism Uncovers Probes of the Gram-Negative Outer Membrane. ACS Chemical Biology, 2021, 16, 929-942.	3.4	29
9	A Staphylococcus aureus clpX Mutant Used as a Unique Screening Tool to Identify Cell Wall Synthesis Inhibitors that Reverse 1²-Lactam Resistance in MRSA. Frontiers in Molecular Biosciences, 2021, 8, 691569.	3.5	2
10	Crystallographic analysis of Tarl and TarJ, a cytidylyltransferase and reductase pair for CDP-ribitol synthesis in Staphylococcus aureus wall teichoic acid biogenesis. Journal of Structural Biology, 2021, 213, 107733.	2.8	1
11	Armeniaspirols inhibit the AAA+ proteases ClpXP and ClpYQ leading to cell division arrest in Gram-positive bacteria. Cell Chemical Biology, 2021, 28, 1703-1715.e11.	5.2	8
12	Structural Insights into the Inhibition of Undecaprenyl Pyrophosphate Synthase from Gram-Positive Bacteria. Journal of Medicinal Chemistry, 2021, 64, 13540-13550.	6.4	2
13	Potentiation of Antibiotics against Gram-Negative Bacteria by Polymyxin B Analogue SPR741 from Unique Perturbation of the Outer Membrane. ACS Infectious Diseases, 2020, 6, 1405-1412.	3.8	72
14	Mimicking the human environment in mice reveals that inhibiting biotin biosynthesis is effective against antibiotic-resistant pathogens. Nature Microbiology, 2020, 5, 93-101.	13.3	25
15	A comprehensive guide to dynamic analysis of microbial gene expression using the 3D-printed PFIbox and a fluorescent reporter library. Nature Protocols, 2020, 15, 575-603.	12.0	2
16	Flexible Hierarchical Wraps Repel Drug-Resistant Gram-Negative and Positive Bacteria. ACS Nano, 2020, 14, 454-465.	14.6	42
17	Discovery of an antivirulence compound that reverses Î ² -lactam resistance in MRSA. Nature Chemical Biology, 2020, 16, 143-149.	8.0	57
18	Creative targeting of the Gramâ€negative outer membrane in antibiotic discovery. Annals of the New York Academy of Sciences, 2020, 1459, 69-85.	3.8	29

#	Article	IF	CITATIONS
19	Genetic and Chemical Screening in Human Blood Serum Reveals Unique Antibacterial Targets and Compounds against Klebsiella pneumoniae. Cell Reports, 2020, 32, 107927.	6.4	28
20	Outer Membrane Disruption Overcomes Intrinsic, Acquired, and Spontaneous Antibiotic Resistance. MBio, 2020, 11, .	4.1	51
21	Overcoming Acquired and Native Macrolide Resistance with Bicarbonate. ACS Infectious Diseases, 2020, 6, 2709-2718.	3.8	18
22	Targeting Two-Component Systems Uncovers a Small-Molecule Inhibitor of Salmonella Virulence. Cell Chemical Biology, 2020, 27, 793-805.e7.	5.2	26
23	Crystallographic analysis of Staphylococcus aureus LcpA, the primary wall teichoic acid ligase. Journal of Biological Chemistry, 2020, 295, 2629-2639.	3.4	23
24	A Deep Learning Approach to Antibiotic Discovery. Cell, 2020, 180, 688-702.e13.	28.9	978
25	Uncovering the Hidden Antibiotic Potential of Cannabis. ACS Infectious Diseases, 2020, 6, 338-346.	3.8	72
26	Genetic and Chemical-Genetic Interactions Map Biogenesis and Permeability Determinants of the Outer Membrane of Escherichia coli. MBio, 2020, 11, .	4.1	20
27	Gene Dispensability in Escherichia coli Grown in Thirty Different Carbon Environments. MBio, 2020, 11,	4.1	21
28	A whole-cell, high-throughput hydrogenase assay to identify factors that modulate [NiFe]-hydrogenase activity. Journal of Biological Chemistry, 2019, 294, 15373-15385.	3.4	11
29	Structure and mechanism of TagA, a novel membrane-associated glycosyltransferase that produces wall teichoic acids in pathogenic bacteria. PLoS Pathogens, 2019, 15, e1007723.	4.7	22
30	Drug repurposing for antimicrobial discovery. Nature Microbiology, 2019, 4, 565-577.	13.3	217
31	A multiplexable assay for screening antibiotic lethality against drug-tolerant bacteria. Nature Methods, 2019, 16, 303-306.	19.0	30
32	High-Throughput Screening for Inhibitors of Wall Teichoic Acid Biosynthesis in Staphylococcus aureus. Methods in Molecular Biology, 2019, 1954, 297-308.	0.9	5
33	A macrophage-based screen identifies antibacterial compounds selective for intracellular Salmonella Typhimurium. Nature Communications, 2019, 10, 197.	12.8	59
34	Chemical-Chemical Combinations Map Uncharted Interactions in Escherichia coli under Nutrient Stress. IScience, 2018, 2, 168-181.	4.1	14
35	Meropenem potentiation of aminoglycoside activity against Pseudomonas aeruginosa: involvement of the MexXY-OprM multidrug efflux system. Journal of Antimicrobial Chemotherapy, 2018, 73, 1247-1255.	3.0	13
36	Overcoming mcr-1 mediated colistin resistance with colistin in combination with other antibiotics. Nature Communications, 2018, 9, 458.	12.8	203

#	Article	IF	CITATIONS
37	Bicarbonate Alters Bacterial Susceptibility to Antibiotics by Targeting the Proton Motive Force. ACS Infectious Diseases, 2018, 4, 382-390.	3.8	92
38	Use of genetic and chemical synthetic lethality as probes of complexity in bacterial cell systems. FEMS Microbiology Reviews, 2018, 42, .	8.6	23
39	Silent but deadly: IS200 promotes pathogenicity in Salmonella Typhimurium. RNA Biology, 2018, 15, 176-181.	3.1	8
40	Open-Source High-Throughput Phenomics of Bacterial Promoter-Reporter Strains. Cell Systems, 2018, 7, 339-346.e3.	6.2	19
41	Nutrient Stress Small-Molecule Screening Platform for Escherichia coli. Methods in Molecular Biology, 2018, 1787, 1-18.	0.9	3
42	Broadened glycosylation patterning of heterologously produced erythromycin. Biotechnology and Bioengineering, 2018, 115, 2771-2777.	3.3	8
43	Bacteria Getting into Shape: Genetic Determinants of <i>E.Âcoli</i> Morphology. MBio, 2017, 8, .	4.1	29
44	Pentamidine sensitizes Gram-negative pathogens to antibiotics and overcomes acquired colistin resistance. Nature Microbiology, 2017, 2, 17028.	13.3	256
45	B.Âsubtilis LytR-CpsA-Psr Enzymes Transfer Wall Teichoic Acids from Authentic Lipid-Linked Substrates to Mature Peptidoglycan InÂVitro. Cell Chemical Biology, 2017, 24, 1537-1546.e4.	5.2	24
46	Exploiting the Sensitivity of Nutrient Transporter Deletion Strains in Discovery of Natural Product Antimetabolites. ACS Infectious Diseases, 2017, 3, 955-965.	3.8	12
47	Chemical genomics reveals mechanistic hypotheses for uncharacterized bioactive molecules in bacteria. Current Opinion in Microbiology, 2017, 39, 42-47.	5.1	11
48	Pyrimethamine as a Potent and Selective Inhibitor of Acute Myeloid Leukemia Identified by High-throughput Drug Screening. Current Cancer Drug Targets, 2016, 16, 818-828.	1.6	17
49	A Comprehensive, CRISPR-based Functional Analysis of Essential Genes in Bacteria. Cell, 2016, 165, 1493-1506.	28.9	593
50	Potentiation of Aminoglycoside Activity in Pseudomonas aeruginosa by Targeting the AmgRS Envelope Stress-Responsive Two-Component System. Antimicrobial Agents and Chemotherapy, 2016, 60, 3509-3518.	3.2	17
51	A Small-Molecule Screening Platform for the Discovery of Inhibitors of Undecaprenyl Diphosphate Synthase. ACS Infectious Diseases, 2016, 2, 489-499.	3.8	20
52	Systematic Genetic Screens Reveal the Dynamic Global Functional Organization of the Bacterial Translation Machinery. Cell Reports, 2016, 17, 904-916.	6.4	34
53	A cell-based approach to characterize antimicrobial compounds through kinetic dose response. Bioorganic and Medicinal Chemistry, 2016, 24, 6315-6319.	3.0	7
54	The Genome-Wide Interaction Network of Nutrient Stress Genes in Escherichia coli. MBio, 2016, 7, .	4.1	30

#	Article	IF	CITATIONS
55	Identification of Two Phosphate Starvation-induced Wall Teichoic Acid Hydrolases Provides First Insights into the Degradative Pathway of a Key Bacterial Cell Wall Component. Journal of Biological Chemistry, 2016, 291, 26066-26082.	3.4	34
56	Strategies for target identification of antimicrobial natural products. Natural Product Reports, 2016, 33, 668-680.	10.3	90
57	Antibacterial drug discovery in the resistance era. Nature, 2016, 529, 336-343.	27.8	1,628
58	Cold Stress Makes Escherichia coli Susceptible to Glycopeptide Antibiotics by Altering Outer Membrane Integrity. Cell Chemical Biology, 2016, 23, 267-277.	5.2	65
59	Assembly and clustering of natural antibiotics guides target identification. Nature Chemical Biology, 2016, 12, 233-239.	8.0	86
60	A robust platform for chemical genomics in bacterial systems. Molecular Biology of the Cell, 2016, 27, 1015-1025.	2.1	57
61	Structural and Kinetic Characterization of Diazabicyclooctanes as Dual Inhibitors of Both Serine-β-Lactamases and Penicillin-Binding Proteins. ACS Chemical Biology, 2016, 11, 864-868.	3.4	52
62	Structure and Mechanism of Staphylococcus aureus TarS, the Wall Teichoic Acid β-glycosyltransferase Involved in Methicillin Resistance. PLoS Pathogens, 2016, 12, e1006067.	4.7	46
63	Unconventional screening approaches for antibiotic discovery. Annals of the New York Academy of Sciences, 2015, 1354, 54-66.	3.8	46
64	Zinc Chelation by a Small-Molecule Adjuvant Potentiates Meropenem Activity in Vivo against NDM-1-Producing <i>Klebsiella pneumoniae</i> . ACS Infectious Diseases, 2015, 1, 533-543.	3.8	50
65	Chemical modulators of ribosome biogenesis as biological probes. Nature Chemical Biology, 2015, 11, 924-932.	8.0	15
66	Gram-Negative Resistance. ACS Infectious Diseases, 2015, 1, 507-507.	3.8	10
67	Structure and mechanism of <i>Staphylococcus aureus</i> TarM, the wall teichoic acid α-glycosyltransferase. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E576-85.	7.1	49
68	Chemical Inhibition of Bacterial Ribosome Biogenesis Shows Efficacy in a Worm Infection Model. Antimicrobial Agents and Chemotherapy, 2015, 59, 2918-2920.	3.2	26
69	Characterization of Wall Teichoic Acid Degradation by the Bacteriophage ϕ29 Appendage Protein GP12 Using Synthetic Substrate Analogs. Journal of Biological Chemistry, 2015, 290, 19133-19145.	3.4	13
70	Antagonism screen for inhibitors of bacterial cell wall biogenesis uncovers an inhibitor of undecaprenyl diphosphate synthase. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11048-11053.	7.1	83
71	New chemical tools to probe cell wall biosynthesis in bacteria. Current Opinion in Microbiology, 2015, 27, 69-77.	5.1	9
72	Editorial overview: Microbial systems biology. Current Opinion in Microbiology, 2015, 27, viii-ix.	5.1	0

#	Article	IF	CITATIONS
73	An electron transfer flavoprotein is essential for viability and its depletion causes a rod-to-sphere change in Burkholderia cenocepacia. Microbiology (United Kingdom), 2015, 161, 1909-1920.	1.8	3
74	A Pipeline for Screening Small Molecules with Growth Inhibitory Activity against Burkholderia cenocepacia. PLoS ONE, 2015, 10, e0128587.	2.5	24
75	Discovery of a small molecule that inhibits bacterial ribosome biogenesis. ELife, 2014, 3, e03574.	6.0	74
76	Taking aim at wall teichoic acid synthesis: new biology and new leads for antibiotics. Journal of Antibiotics, 2014, 67, 43-51.	2.0	99
77	Quantitative Genome-Wide Genetic Interaction Screens Reveal Global Epistatic Relationships of Protein Complexes in Escherichia coli. PLoS Genetics, 2014, 10, e1004120.	3.5	96
78	<pre><scp>PhoR</scp> autokinase activity is controlled by an intermediate in wall teichoic acid metabolism that is sensed by the intracellular <scp>PAS</scp> domain during the <scp>PhoPR</scp>â€mediated phosphate limitation response of <scp><i>B</i></scp><i>acillus subtilis</i>. Molecular Microbiology, 2014, 94, 1242-1259.</pre>	2.5	37
79	Phenotypic investigations of the depletion of EngA in <i>Escherichia coli</i> are consistent with a role in ribosome biogenesis. FEMS Microbiology Letters, 2014, 353, 26-32.	1.8	18
80	Designing analogs of ticlopidine, a wall teichoic acid inhibitor, to avoid formation of its oxidative metabolites. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 905-910.	2.2	23
81	Metal-Induced Isomerization Yields an Intracellular Chelator that Disrupts Bacterial Iron Homeostasis. Chemistry and Biology, 2014, 21, 136-145.	6.0	16
82	Reconstituting poly(glycerol phosphate) wall teichoic acid biosynthesis in vitro using authentic substrates. Chemical Science, 2014, 5, 3823.	7.4	17
83	Discovery of Novel Cell Wall-Active Compounds Using P _{<i>ywaC</i>} , a Sensitive Reporter of Cell Wall Stress, in the Model Gram-Positive Bacterium Bacillus subtilis. Antimicrobial Agents and Chemotherapy, 2014, 58, 3261-3269.	3.2	33
84	Rank Ordering Plate Data Facilitates Data Visualization and Normalization in High-Throughput Screening. Journal of Biomolecular Screening, 2014, 19, 1314-1320.	2.6	46
85	A Dual Reporter System for Detecting RNA Interactions in Bacterial Cells. ChemBioChem, 2014, 15, 2703-2709.	2.6	Ο
86	High-Throughput Drug Screening Identifies Pyrimethamine As a Potent and Selective Inhibitor of Acute Myeloid Leukemia. Blood, 2014, 124, 2304-2304.	1.4	0
87	Metabolic suppression identifies new antibacterial inhibitors under nutrient limitation. Nature Chemical Biology, 2013, 9, 796-804.	8.0	105
88	Antibiotic resistance—the need for global solutions. Lancet Infectious Diseases, The, 2013, 13, 1057-1098.	9.1	3,184
89	Collapsing the Proton Motive Force to Identify Synergistic Combinations against Staphylococcus aureus. Chemistry and Biology, 2013, 20, 1168-1178.	6.0	178
90	Is the GAIN Act a turning point in new antibiotic discovery?. Canadian Journal of Microbiology, 2013, 59, 153-156.	1.7	38

#	Article	IF	CITATIONS
91	Exploring Intermolecular Interactions of a Substrate Binding Protein Using a Riboswitch-Based Sensor. Chemistry and Biology, 2013, 20, 1502-1512.	6.0	16
92	Degradation of MAC13243 and studies of the interaction of resulting thiourea compounds with the lipoprotein targeting chaperone LolA. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 2426-2431.	2.2	39
93	Inhibition of WTA Synthesis Blocks the Cooperative Action of PBPs and Sensitizes MRSA to β-Lactams. ACS Chemical Biology, 2013, 8, 226-233.	3.4	184
94	Entrapment of Living Bacterial Cells in Low-Concentration Silica Materials Preserves Cell Division and Promoter Regulation. Chemistry of Materials, 2013, 25, 4798-4805.	6.7	23
95	A High-Throughput Screen of the GTPase Activity of Escherichia coli EngA to Find an Inhibitor of Bacterial Ribosome Biogenesis. Journal of Biomolecular Screening, 2013, 18, 830-836.	2.6	21
96	Discovery of antibiotic adjuvants. Nature Biotechnology, 2013, 31, 120-122.	17.5	46
97	Identification of Drugs IncludingÂa DopamineÂReceptor Antagonist that Selectively Target Cancer Stem Cells. Cell, 2012, 149, 1284-1297.	28.9	420
98	Antibiotics as probes of biological complexity. Nature Chemical Biology, 2011, 7, 415-423.	8.0	54
99	Crossâ€ s pecies discovery of syncretic drug combinations that potentiate the antifungal fluconazole. Molecular Systems Biology, 2011, 7, 499.	7.2	169
100	Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nature Chemical Biology, 2011, 7, 348-350.	8.0	447
101	Cryo-electron microscopy structure of the 30S subunit in complex with the YjeQ biogenesis factor. Rna, 2011, 17, 2026-2038.	3.5	23
102	Understanding ribosome assembly: the structure of in vivo assembled immature 30S subunits revealed by cryo-electron microscopy. Rna, 2011, 17, 697-709.	3.5	52
103	Studies of the Genetics, Function, and Kinetic Mechanism of TagE, the Wall Teichoic Acid Glycosyltransferase in Bacillus subtilis 168. Journal of Biological Chemistry, 2011, 286, 23708-23716.	3.4	47
104	Chemical Genomic Approaches to Study Model Microbes. Chemistry and Biology, 2010, 17, 624-632.	6.0	21
105	Using a Riboswitch Sensor to Examine Coenzyme B12 Metabolism and Transport in E. coli. Chemistry and Biology, 2010, 17, 756-765.	6.0	72
106	Chemical Probes of Escherichia coli Uncovered through Chemical-Chemical Interaction Profiling with Compounds of Known Biological Activity. Chemistry and Biology, 2010, 17, 852-862.	6.0	65
107	Thermodynamic and NMR analysis of inhibitor binding to dihydrofolate reductase. Bioorganic and Medicinal Chemistry, 2010, 18, 8485-8492.	3.0	5
108	Structure of the bacterial teichoic acid polymerase TagF provides insights into membrane association and catalysis. Nature Structural and Molecular Biology, 2010, 17, 582-589.	8.2	37

#	Article	IF	CITATIONS
109	An allosteric inhibitor of substrate recognition by the SCFCdc4 ubiquitin ligase. Nature Biotechnology, 2010, 28, 733-737.	17.5	136
110	Biosynthesis of cell wall teichoic acid polymers. , 2010, , 337-350.		2
111	A High-throughput Pharmacoviral Approach Identifies Novel Oncolytic Virus Sensitizers. Molecular Therapy, 2010, 18, 1123-1129.	8.2	85
112	The Wall Teichoic Acid Polymerase TagF Is Non-processive in Vitro and Amenable to Study Using Steady State Kinetic Analysis. Journal of Biological Chemistry, 2009, 284, 21132-21138.	3.4	13
113	High-Throughput Screening Identifies Novel Inhibitors of the Acetyltransferase Activity of Escherichia coli GlmU. Antimicrobial Agents and Chemotherapy, 2009, 53, 2306-2311.	3.2	48
114	The <i>N</i> -Acetylmannosamine Transferase Catalyzes the First Committed Step of Teichoic Acid Assembly in <i>Bacillus subtilis</i> and <i>Staphylococcus aureus</i> . Journal of Bacteriology, 2009, 191, 4030-4034.	2.2	64
115	Identification of a Toxic Peptide through Bidirectional Expression of Small RNAs. ChemBioChem, 2009, 10, 238-241.	2.6	5
116	Not as fab as we thought. Nature, 2009, 458, 39-40.	27.8	12
117	Chemical genomics in Escherichia coli identifies an inhibitor of bacterial lipoprotein targeting. Nature Chemical Biology, 2009, 5, 849-856.	8.0	111
118	Probing Teichoic Acid Genetics with Bioactive Molecules Reveals New Interactions among Diverse Processes in Bacterial Cell Wall Biogenesis. Chemistry and Biology, 2009, 16, 548-556.	6.0	68
119	Are essential genes really essential?. Trends in Microbiology, 2009, 17, 433-438.	7.7	75
120	New screens and targets in antibacterial drug discovery. Current Opinion in Microbiology, 2009, 12, 497-504.	5.1	48
121	Cryoprotection from bacterial teichoic acid. , 2009, , .		3
122	High-Throughput Screening of Model Bacteria. Methods in Molecular Biology, 2009, 486, 13-27.	0.9	8
123	The ATPase activity of an â€~essential' Bacillus subtilis enzyme, YdiB, is required for its cellular function and is modulated by oligomerization. Microbiology (United Kingdom), 2009, 155, 944-956.	1.8	21
124	A FACSâ€Based Approach to Engineering Artificial Riboswitches. ChemBioChem, 2008, 9, 1906-1911.	2.6	67
125	The Wall Teichoic Acid Polymerase TagF Efficiently Synthesizes Poly(glycerol phosphate) on the TagB Product Lipid III. ChemBioChem, 2008, 9, 1385-1390.	2.6	30
126	Identification of Pharmacological Chaperones for Gaucher Disease and Characterization of Their Effects on βâ€Glucocerebrosidase by Hydrogen/Deuterium Exchange Mass Spectrometry. ChemBioChem, 2008, 9, 2650-2662.	2.6	74

#	Article	IF	CITATIONS
127	Ribosome biogenesis; the KsgA protein throws a methylâ€mediated switch in ribosome assembly. Molecular Microbiology, 2008, 70, 1051-1053.	2.5	19
128	Use of CDP-Glycerol as an Alternate Acceptor for the Teichoic Acid Polymerase Reveals that Membrane Association Regulates Polymer Length. Journal of Bacteriology, 2008, 190, 6940-6947.	2.2	20
129	Small and lethal: searching for new antibacterial compounds with novel modes of actionThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB — Systems and Chemical Biology, and has undergone the Journal's usual peer review process Biochemistry and Cell Biology, 2008, 86, 111-115.	2.0	13
130	Comment: Canadian Chemical Biology Network: biochemistry back to the future / Commentaire : Réseau canadien de biologie chimique: la biochimie de retour vers le futur. Biochemistry and Cell Biology, 2008, 86, ix-xii.	2.0	2
131	Introduction: 50th Annual Meeting of the CSBMCB: A report on a celebration of great science and a CSBMCB milestone / Introduction : Le 50 ^e congrÃ [°] s annuel de la SCBBMC : célébration de réussites scientifiques remarquables et d'un jalon important franchi par l'organisation. Biochemistry and Cell Biology. 2008, 86, v-vi.	2.0	0
132	Duplication of Teichoic Acid Biosynthetic Genes in <i>Staphylococcus aureus</i> Leads to Functionally Redundant Poly(Ribitol Phosphate) Polymerases. Journal of Bacteriology, 2008, 190, 5642-5649.	2.2	25
133	Genetic Interaction Screens with Ordered Overexpression and Deletion Clone Sets Implicate the <i>Escherichia coli</i> GTPase YjeQ in Late Ribosome Biogenesis. Journal of Bacteriology, 2008, 190, 2537-2545.	2.2	55
134	Magnetic resonance tells microbiology where to go; bacterial teichoic acid protects liquid water at sub-zero temperatures. , 2008, , .		2
135	The Amino Terminus of Bacillus subtilis TagB Possesses Separable Localization and Functional Properties. Journal of Bacteriology, 2007, 189, 6816-6823.	2.2	16
136	Isolation of the rstA Gene as a Multicopy Suppressor of YjeE, an Essential ATPase of Unknown Function in Escherichia coli. Journal of Bacteriology, 2007, 189, 3318-3321.	2.2	14
137	Inhibitors of Bacterial Cystathionine β-Lyase: Leads for New Antimicrobial Agents and Probes of Enzyme Structure and Function. Journal of Medicinal Chemistry, 2007, 50, 755-764.	6.4	38
138	Isolation of DNA Aptamers for CDPâ€Ribitol Synthase, and Characterization of Their Inhibitory and Structural Properties. ChemBioChem, 2007, 8, 2052-2057.	2.6	8
139	High-Throughput Screening for Human Lysosomal β-N-Acetyl Hexosaminidase Inhibitors Acting as Pharmacological Chaperones. Chemistry and Biology, 2007, 14, 153-164.	6.0	99
140	A 2.13 Ã Structure of E. coli Dihydrofolate Reductase Bound to a Novel Competitive Inhibitor Reveals a New Binding Surface Involving the M20 Loop Region. Journal of Medicinal Chemistry, 2006, 49, 6977-6986.	6.4	45
141	Non-ribosomal factors in ribosome subunit assembly are emerging targets for new antibacterial drugs. Current Opinion in Pharmacology, 2006, 6, 453-458.	3.5	47
142	Cell wall assembly in Bacillus subtilis: how spirals and spaces challenge paradigms. Molecular Microbiology, 2006, 60, 1077-1090.	2.5	96
143	Antibiotic stops â€~ping-pong' match. Nature, 2006, 441, 293-294.	27.8	18
144	The worm turns for antimicrobial discovery. Nature Biotechnology, 2006, 24, 1098-1100.	17.5	11

#	Article	IF	CITATIONS
145	Crystal structure of CTP:glycerol-3-phosphate cytidylyltransferase from Staphylococcus aureus: Examination of structural basis for kinetic mechanism. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 63-69.	2.3	16
146	Small-Molecule Screening Made Simple for a Difficult Target with a Signaling Nucleic Acid Aptamer that Reports on Deaminase Activity. Angewandte Chemie - International Edition, 2006, 45, 5648-5652.	13.8	52
147	The yjeQ Gene Is Required for Virulence of Staphylococcus aureus. Infection and Immunity, 2006, 74, 4918-4921.	2.2	21
148	Lesions in Teichoic Acid Biosynthesis in Staphylococcus aureus Lead to a Lethal Gain of Function in the Otherwise Dispensable Pathway. Journal of Bacteriology, 2006, 188, 4183-4189.	2.2	169
149	Cooperative and Critical Roles for Both G Domains in the GTPase Activity and Cellular Function of Ribosome-Associated Escherichia coli EngA. Journal of Bacteriology, 2006, 188, 7992-7996.	2.2	51
150	Wall Teichoic Acid Polymers Are Dispensable for Cell Viability in Bacillus subtilis. Journal of Bacteriology, 2006, 188, 8313-8316.	2.2	155
151	Characterization of the Bacillus subtilis GTPase YloQ and its role in ribosome function. Biochemical Journal, 2005, 389, 843-852.	3.7	50
152	Conserved P-loop GTPases of unknown function in bacteria: an emerging and vital ensemble in bacterial physiology. Biochemistry and Cell Biology, 2005, 83, 738-746.	2.0	60
153	Experimental Screening of Dihydrofolate Reductase Yields a "Test Set―of 50,000 Small Molecules for a Computational Data-Mining and Docking Competition. Journal of Biomolecular Screening, 2005, 10, 653-657.	2.6	29
154	Two Conserved Histidine Residues Are Critical to the Function of the TagF-like Family of Enzymes. Journal of Biological Chemistry, 2005, 280, 36683-36690.	3.4	19
155	The TagB Protein in Bacillus subtilis 168 Is an Intracellular Peripheral Membrane Protein That Can Incorporate Glycerol Phosphate onto a Membrane-bound Acceptor in Vitro. Journal of Biological Chemistry, 2005, 280, 36691-36700.	3.4	41
156	Problems with Co-Funding in Canada. Science, 2005, 308, 1867b-1867b.	12.6	6
157	New Targets and Screening Approaches in Antimicrobial Drug Discovery. Chemical Reviews, 2005, 105, 759-774.	47.7	161
158	Studies of the Interaction of Escherichia coli YjeQ with the Ribosome In Vitro. Journal of Bacteriology, 2004, 186, 1381-1387.	2.2	97
159	Teichoic Acid Is an Essential Polymer in Bacillus subtilis That Is Functionally Distinct from Teichuronic Acid. Journal of Bacteriology, 2004, 186, 7865-7873.	2.2	90
160	Drugs against superbugs: private lessons from bacteriophages. Trends in Biotechnology, 2004, 22, 434-436.	9.3	9
161	High-Throughput Screening Identifies Inhibitors of the SARS Coronavirus Main Proteinase. Chemistry and Biology, 2004, 11, 1445-1453.	6.0	182
162	Multicopy Suppressors for Novel Antibacterial Compounds Reveal Targets and Drug Efflux Susceptibility. Chemistry and Biology, 2004, 11, 1423-1430.	6.0	83

#	Article	IF	CITATIONS
163	An Expedient and Facile One-Step Synthesis of a Biguanide Library by Microwave Irradiation Coupled with Simple Product Filtration. Inhibitors of Dihydrofolate Reductase. ACS Combinatorial Science, 2004, 6, 776-782.	3.3	32
164	Bifunctional Catalysis by CDP-ribitol Synthase:Â Convergent Recruitment of Reductase and Cytidylyltransferase Activities inHaemophilus influenzaeandStaphylococcus aureusâ€. Biochemistry, 2004, 43, 11802-11812.	2.5	37
165	Probing the active site of YjeE: a vital Escherichia coli protein of unknown function. Biochemical Journal, 2004, 384, 577-584.	3.7	28
166	High throughput screening identifies novel inhibitors of Escherichia coli dihydrofolate reductase that are competitive with dihydrofolate. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 2493-2496.	2.2	63
167	CTP:glycerol 3-phosphate cytidylyltransferase (TarD) from Staphylococcus aureus catalyzes the cytidylyl transfer via an ordered Bi–Bi reaction mechanism with micromolar Km values. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2003, 1646, 196-206.	2.3	35
168	Screening in Academe: A Perspective on Implementation of University-Based Small Molecule Screening. Journal of Biomolecular Screening, 2003, 8, 377-379.	2.6	13
169	Purified, Recombinant TagF Protein from Bacillus subtilis 168 Catalyzes the Polymerization of Glycerol Phosphate onto a Membrane Acceptor in Vitro. Journal of Biological Chemistry, 2003, 278, 18002-18007.	3.4	42
170	Characterization of the Depletion of 2- C -Methyl- d -Erythritol-2,4-Cyclodiphosphate Synthase in Escherichia coli and Bacillus subtilis. Journal of Bacteriology, 2002, 184, 5609-5618.	2.2	51
171	YjeQ, an Essential, Conserved, Uncharacterized Protein from Escherichia coli, Is an Unusual GTPase with Circularly Permuted G-Motifs and Marked Burst Kinetics. Biochemistry, 2002, 41, 11109-11117.	2.5	73
172	Reduction Precedes Cytidylyl Transfer without Substrate Channeling in Distinct Active Sites of the Bifunctional CDP-Ribitol Synthase from Haemophilus influenzae. Biochemistry, 2001, 40, 5041-5048.	2.5	21
173	Crystallization and preliminary X-ray diffraction studies of glycerol 3-phosphate cytidylyltransferase fromStaphylococcus aureus. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 918-920.	2.5	3
174	Precise Deletion of tagD and Controlled Depletion of Its Product, Glycerol 3-Phosphate Cytidylyltransferase, Leads to Irregular Morphology and Lysis of Bacillus subtilis Grown at Physiological Temperature. Journal of Bacteriology, 2001, 183, 6688-6693.	2.2	53
175	Development and Characterization of a Xylose-Dependent System for Expression of Cloned Genes in Bacillus subtilis : Conditional Complementation of a Teichoic Acid Mutant. Applied and Environmental Microbiology, 2001, 67, 403-410.	3.1	135
176	<i>Helicobacter pylori</i> Physiology Predicted from Genomic Comparison of Two Strains. Microbiology and Molecular Biology Reviews, 1999, 63, 675-707.	6.6	167
177	Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature, 1999, 397, 176-180.	27.8	1,781
178	Enzymatic interesterification of triolein with tripalmitin in canola lecithin-hexane reverse micelles. JAOCS, Journal of the American Oil Chemists' Society, 1993, 70, 737-744.	1.9	38
179	Isolation and structural elucidation of a tetrahedral intermediate in the UDP-N-acetylglucosamine enolpyruvoyl transferase enzymic pathway. Journal of the American Chemical Society, 1993, 115, 10398-10399.	13.7	49
180	Spin-labelling and Differential Scanning Calorimetry Study of the Denaturation of Aspartic Proteinases from the Fungi <i>Endothia parasitica</i> and <i>Mucor miehei</i> . Agricultural and Biological Chemistry, 1991, 55, 1639-1641.	0.3	0

#	Article	IF	CITATIONS
181	Purification of Two Fungal Aspartic Proteinases Using Fast Protein Liquid Chromatography. Agricultural and Biological Chemistry, 1990, 54, 1563-1565.	0.3	3