## Jonathan T Reeder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6044224/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | An ultra-lightweight design for imperceptible plastic electronics. Nature, 2013, 499, 458-463.                                                                                                        | 27.8 | 2,133     |
| 2  | A transparent bending-insensitive pressure sensor. Nature Nanotechnology, 2016, 11, 472-478.                                                                                                          | 31.5 | 680       |
| 3  | Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Science Advances, 2019, 5, eaav3294.                  | 10.3 | 497       |
| 4  | Ultraflexible, large-area, physiological temperature sensors for multipoint measurements.<br>Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14533-14538. | 7.1  | 313       |
| 5  | Soft, Skin-Integrated Multifunctional Microfluidic Systems for Accurate Colorimetric Analysis of<br>Sweat Biomarkers and Temperature. ACS Sensors, 2019, 4, 379-388.                                  | 7.8  | 239       |
| 6  | Mechano-acoustic sensing of physiological processes and body motions via a soft wireless device placed at the suprasternal notch. Nature Biomedical Engineering, 2020, 4, 148-158.                    | 22.5 | 223       |
| 7  | Waterproof, electronics-enabled, epidermal microfluidic devices for sweat collection, biomarker analysis, and thermography in aquatic settings. Science Advances, 2019, 5, eaau6356.                  | 10.3 | 208       |
| 8  | Mechanically Adaptive Organic Transistors for Implantable Electronics. Advanced Materials, 2014, 26,<br>4967-4973.                                                                                    | 21.0 | 162       |
| 9  | Emerging Modalities and Implantable Technologies for Neuromodulation. Cell, 2020, 181, 115-135.                                                                                                       | 28.9 | 152       |
| 10 | Fabrication of Responsive, Softening Neural Interfaces. Advanced Functional Materials, 2012, 22,<br>3470-3479.                                                                                        | 14.9 | 127       |
| 11 | Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves. Science Advances, 2019, 5, eaaw5296.                       | 10.3 | 127       |
| 12 | Threeâ€Ðimensional Flexible Electronics Enabled by Shape Memory Polymer Substrates for Responsive<br>Neural Interfaces. Macromolecular Materials and Engineering, 2012, 297, 1193-1202.               | 3.6  | 120       |
| 13 | A strain-absorbing design for tissue–machine interfaces using a tunable adhesive gel. Nature<br>Communications, 2014, 5, 5898.                                                                        | 12.8 | 120       |
| 14 | Soft, skin-mounted microfluidic systems for measuring secretory fluidic pressures generated at the surface of the skin by eccrine sweat glands. Lab on A Chip, 2017, 17, 2572-2580.                   | 6.0  | 117       |
| 15 | Skin-interfaced microfluidic system with personalized sweating rate and sweat chloride analytics for sports science applications. Science Advances, 2020, 6, .                                        | 10.3 | 110       |
| 16 | Sweat-activated biocompatible batteries for epidermal electronic and microfluidic systems. Nature<br>Electronics, 2020, 3, 554-562.                                                                   | 26.0 | 99        |
| 17 | Soft Wearable Systems for Colorimetric and Electrochemical Analysis of Biofluids. Advanced<br>Functional Materials, 2020, 30, 1907269.                                                                | 14.9 | 92        |
| 18 | Soft, Skinâ€Interfaced Microfluidic Systems with Wireless, Batteryâ€Free Electronics for Digital, Realâ€Time<br>Tracking of Sweat Loss and Electrolyte Composition. Small, 2018, 14, e1802876.        | 10.0 | 88        |

Jonathan T Reeder

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Soft, skin-interfaced wearable systems for sports science and analytics. Current Opinion in Biomedical Engineering, 2019, 9, 47-56.                                                                                                             | 3.4  | 84        |
| 20 | Soft, skin-interfaced microfluidic systems with integrated immunoassays, fluorometric sensors, and impedance measurement capabilities. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27906-27915. | 7.1  | 84        |
| 21 | Resettable skin interfaced microfluidic sweat collection devices with chemesthetic hydration feedback. Nature Communications, 2019, 10, 5513.                                                                                                   | 12.8 | 74        |
| 22 | Biodegradable Polyanhydrides as Encapsulation Layers for Transient Electronics. Advanced<br>Functional Materials, 2020, 30, 2000941.                                                                                                            | 14.9 | 67        |
| 23 | Soft, skin-interfaced sweat stickers for cystic fibrosis diagnosis and management. Science<br>Translational Medicine, 2021, 13, .                                                                                                               | 12.4 | 65        |
| 24 | Soft, Skinâ€Interfaced Microfluidic Systems with Passive Galvanic Stopwatches for Precise<br>Chronometric Sampling of Sweat. Advanced Materials, 2019, 31, e1902109.                                                                            | 21.0 | 62        |
| 25 | Soft, bioresorbable coolers for reversible conduction block of peripheral nerves. Science, 2022, 377, 109-115.                                                                                                                                  | 12.6 | 62        |
| 26 | 3D, Reconfigurable, Multimodal Electronic Whiskers via Directed Air Assembly. Advanced Materials, 2018, 30, 1706733.                                                                                                                            | 21.0 | 45        |
| 27 | Skinâ€Interfaced Microfluidic Systems that Combine Hard and Soft Materials for Demanding<br>Applications in Sweat Capture and Analysis. Advanced Healthcare Materials, 2021, 10, e2000722.                                                      | 7.6  | 40        |
| 28 | Continuous, noninvasive wireless monitoring of flow of cerebrospinal fluid through shunts in patients with hydrocephalus. Npj Digital Medicine, 2020, 3, 29.                                                                                    | 10.9 | 26        |
| 29 | Bioresorbable Microdroplet Lasers as Injectable Systems for Transient Thermal Sensing and Modulation. ACS Nano, 2021, 15, 2327-2339.                                                                                                            | 14.6 | 20        |
| 30 | Development of flexible and wide-range polymer-based temperature sensor for human bodies. , 2016, , .                                                                                                                                           |      | 14        |
| 31 | Measuring fine-grained heart-rate using a flexible wearable sensor in the presence of noise. , 2018, , .                                                                                                                                        |      | 8         |
| 32 | Electronic Whiskers: 3D, Reconfigurable, Multimodal Electronic Whiskers via Directed Air Assembly<br>(Adv. Mater. 11/2018). Advanced Materials, 2018, 30, 1870078.                                                                              | 21.0 | 3         |