Constantin Polychronakos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6044183/publications.pdf Version: 2024-02-01

		46984	24961
146	12,631	47	109
papers	citations	h-index	g-index
153	153	153	18752
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature, 2007, 445, 881-885.	13.7	2,651
2	Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nature Genetics, 1997, 15, 289-292.	9.4	745
3	Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations. Nature Genetics, 2009, 41, 157-159.	9.4	585
4	Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease. Human Genetics, 2013, 132, 1077-1130.	1.8	528
5	A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene. Nature, 2007, 448, 591-594.	13.7	497
6	Guidelines for Growth Hormone and Insulin-Like Growth Factor-I Treatment in Children and Adolescents: Growth Hormone Deficiency, Idiopathic Short Stature, and Primary Insulin-Like Growth Factor-I Deficiency. Hormone Research in Paediatrics, 2016, 86, 361-397.	0.8	444
7	Parental genomic imprinting of the human IGF2 gene. Nature Genetics, 1993, 4, 98-101.	9.4	425
8	Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nature Genetics, 2009, 41, 1110-1115.	9.4	418
9	Rfx6 directs islet formation and insulin production in mice and humans. Nature, 2010, 463, 775-780.	13.7	300
10	A Genome-Wide Meta-Analysis of Six Type 1 Diabetes Cohorts Identifies Multiple Associated Loci. PLoS Genetics, 2011, 7, e1002293.	1.5	297
11	A Common Autoimmunity Predisposing Signal Peptide Variant of the Cytotoxic T-lymphocyte Antigen 4 Results in Inefficient Glycosylation of the Susceptibility Allele. Journal of Biological Chemistry, 2002, 277, 46478-46486.	1.6	246
12	Insulin Expression Levels in the Thymus Modulate Insulin-Specific Autoreactive T-Cell Tolerance: The Mechanism by Which the IDDM2 Locus May Predispose to Diabetes. Diabetes, 2002, 51, 1383-1390.	0.3	241
13	A Polymorphism Within the <i>G6PC2</i> Gene Is Associated with Fasting Plasma Glucose Levels. Science, 2008, 320, 1085-1088.	6.0	227
14	Meta-analysis of shared genetic architecture across ten pediatric autoimmune diseases. Nature Medicine, 2015, 21, 1018-1027.	15.2	212
15	Understanding type 1 diabetes through genetics: advances and prospects. Nature Reviews Genetics, 2011, 12, 781-792.	7.7	196
16	From Disease Association to Risk Assessment: An Optimistic View from Genome-Wide Association Studies on Type 1 Diabetes. PLoS Genetics, 2009, 5, e1000678.	1.5	186
17	Insulin VNTR allele-specific effect in type 1 diabetes depends on identity of untransmitted paternal allele. Nature Genetics, 1997, 17, 350-352.	9.4	183
18	Genetic correlations among psychiatric and immuneâ€related phenotypes based on genomeâ€wide association data. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2018, 177, 641-657.	1.1	158

#	Article	IF	CITATIONS
19	Comparative genetic analysis of inflammatory bowel disease and type 1 diabetes implicates multiple loci with opposite effects. Human Molecular Genetics, 2010, 19, 2059-2067.	1.4	157
20	Exome sequencing: Dual role as a discovery and diagnostic tool. Annals of Neurology, 2012, 71, 5-14.	2.8	157
21	Investigating the Causal Relationship of C-Reactive Protein with 32 Complex Somatic and Psychiatric Outcomes: A Large-Scale Cross-Consortium Mendelian Randomization Study. PLoS Medicine, 2016, 13, e1001976.	3.9	150
22	A Novel Susceptibility Locus for Type 1 Diabetes on Chr12q13 Identified by a Genome-Wide Association Study. Diabetes, 2008, 57, 1143-1146.	0.3	137
23	Follow-Up Analysis of Genome-Wide Association Data Identifies Novel Loci for Type 1 Diabetes. Diabetes, 2009, 58, 290-295.	0.3	136
24	The INS 5′ Variable Number of Tandem Repeats Is Associated with IGF2 Expression in Humans. Journal of Biological Chemistry, 1998, 273, 14158-14164.	1.6	124
25	Imprinted and Genotype-specific Expression of Genes at theIDDM2Locus in Pancreas and Leucocytes. Journal of Autoimmunity, 1996, 9, 397-403.	3.0	116
26	Safety Profile of Frequent Short Courses of Oral Glucocorticoids in Acute Pediatric Asthma: Impact on Bone Metabolism, Bone Density, and Adrenal Function. Pediatrics, 2003, 111, 376-383.	1.0	116
27	Unexpected allelic heterogeneity and spectrum of mutations in Fowler syndrome revealed by next-generation exome sequencing. Human Mutation, 2010, 31, 918-923.	1.1	116
28	Neonatal diabetes, with hypoplastic pancreas, intestinal atresia and gall bladder hypoplasia: search for the aetiology of a new autosomal recessive syndrome. Diabetologia, 2004, 47, 2160-2167.	2.9	96
29	The molecular genetics of type 1 diabetes: new genes and emerging mechanisms. Trends in Molecular Medicine, 2008, 14, 268-275.	3.5	94
30	Prednisolone in the treatment of adrenal insufficiency: a re-evaluation of relative potency. Journal of Pediatrics, 2003, 143, 402-405.	0.9	91
31	A new paradigm emerges from the study of de novo mutations in the context of neurodevelopmental disease. Molecular Psychiatry, 2013, 18, 141-153.	4.1	85
32	Toward Further Mapping of the Association Between the IL2RA Locus and Type 1 Diabetes. Diabetes, 2007, 56, 1174-1176.	0.3	82
33	Mitogenic effects of insulin and insulin-like growth factors on PA-III rat prostate adenocarcinoma cells: Characterization of the receptors involved. Prostate, 1991, 19, 313-321.	1.2	79
34	Mechanisms of genetic susceptibility to type I diabetes: beyond HLA. Molecular Genetics and Metabolism, 2004, 81, 187-195.	0.5	78
35	Class III Alleles of the Variable Number of Tandem Repeat Insulin Polymorphism Associated with Silencing of Thymic Insulin Predispose to Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 3705-3710.	1.8	76
36	Aberrant imprinting of the insulin-like growth factor II receptor gene in Wilms' tumor. Oncogene, 1997, 14, 1041-1046.	2.6	74

#	Article	IF	CITATIONS
37	Identification of susceptibility genes for complex diseases using pooling-based genome-wide association scans. Human Genetics, 2009, 125, 305-318.	1.8	74
38	Somatic point mutations occurring early in development: a monozygotic twin study. Journal of Medical Genetics, 2014, 51, 28-34.	1.5	73
39	Genome-wide profiling using single-nucleotide polymorphism arrays identifies novel chromosomal imbalances in pediatric glioblastomas. Neuro-Oncology, 2010, 12, 153-163.	0.6	72
40	Rare Genetic Variants of Large Effect Influence Risk of Type 1 Diabetes. Diabetes, 2020, 69, 784-795.	0.3	69
41	Loss of imprinting and allele switching of p73 in renal cell carcinoma. Oncogene, 1998, 17, 1739-1741.	2.6	66
42	Cross-disorder analysis of schizophrenia and 19 immune-mediated diseases identifies shared genetic risk. Human Molecular Genetics, 2019, 28, 3498-3513.	1.4	65
43	Association of the Cytotoxic T Lymphocyte-Associated Antigen 4 Gene with Type 1 Diabetes: Evidence for Independent Effects of Two Polymorphisms on the Same Haplotype Block. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 6257-6265.	1.8	64
44	Identification of Novel T1D Risk Loci and Their Association With Age and Islet Function at Diagnosis in Autoantibody-Positive T1D Individuals: Based on a Two-Stage Genome-Wide Association Study. Diabetes Care, 2019, 42, 1414-1421.	4.3	60
45	Genetic sharing and heritability of paediatric age of onset autoimmune diseases. Nature Communications, 2015, 6, 8442.	5.8	58
46	Polymorphic Functional Imprinting of the Human IGF2 Gene among Individuals, in Blood Cells, Is Associated with H19 Expression. Biochemical and Biophysical Research Communications, 1996, 220, 1014-1019.	1.0	49
47	Evidence against GRB10 as the Gene Responsible for Silver–Russell Syndrome. Biochemical and Biophysical Research Communications, 2001, 286, 943-948.	1.0	48
48	Assessing the validity of the association between the SUMO4 M55V variant and risk of type 1 diabetes. Nature Genetics, 2005, 37, 111-112.	9.4	47
49	Allelic effects on gene regulation at the autoimmunity-predisposing CTLA4 locus: a re-evaluation of the 3′ +6230G>A polymorphism. Genes and Immunity, 2005, 6, 305-311.	2.2	43
50	Association Analysis of Type 2 Diabetes Loci in Type 1 Diabetes. Diabetes, 2008, 57, 1983-1986.	0.3	42
51	Vitamin D levels and risk of type 1 diabetes: A Mendelian randomization study. PLoS Medicine, 2021, 18, e1003536.	3.9	42
52	DRB1*0401-restricted human T cell clone specific for the major proinsulin73-90 epitope expresses a down-regulatory T helper 2 phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11683-11688.	3.3	40
53	Proinsulin Expression by Hassall's Corpuscles in the Mouse Thymus. Diabetes, 2004, 53, 354-359.	0.3	38
54	Divergence between Genetic Determinants ofIGF2Transcription Levels in Leukocytes and ofIDDM2-Encoded Susceptibility to Type 1 Diabetes1. Journal of Clinical Endocrinology and Metabolism, 1998, 83, 2933-2939.	1.8	36

#	Article	IF	CITATIONS
55	Immunogenetics of Type 1 Diabetes. Hormone Research in Paediatrics, 2005, 64, 180-188.	0.8	36
56	The association between the IFIH1 locus and type 1 diabetes. Diabetologia, 2008, 51, 473-475.	2.9	33
57	Specificity of insulin-like growth factor binding to type-II IGF receptors in rabbit mammary gland and hypophysectomized rat liver. Biochemical and Biophysical Research Communications, 1987, 149, 555-561.	1.0	31
58	Cell culture-induced aberrant methylation of the imprinted IG DMR in human lymphoblastoid cell lines. Epigenetics, 2010, 5, 50-60.	1.3	30
59	Class III Alleles at the Insulin VNTR Polymorphism Are Associated With Regulatory T-Cell Responses to Proinsulin Epitopes in HLA-DR4, DQ8 Individuals. Diabetes, 2005, 54, S18-S24.	0.3	29
60	Imprinting ofIGF2, insulin-dependent diabetes, immune function, and apoptosis: A hypothesis. Genesis, 1995, 17, 253-262.	3.3	28
61	Compensatory beliefs about glucose testing are associated with low adherence to treatment and poor metabolic control in adolescents with type 1 diabetes. Health Education Research, 2009, 24, 890-896.	1.0	28
62	Parental genomic imprinting in endocrinopathies. European Journal of Endocrinology, 2002, 147, 561-569.	1.9	27
63	Isolation and Characterization of Proinsulin-Producing Medullary Thymic Epithelial Cell Clones. Diabetes, 2006, 55, 2595-2601.	0.3	27
64	Strand bias in complementary single-nucleotide polymorphisms of transcribed human sequences: evidence for functional effects of synonymous polymorphisms. BMC Genomics, 2006, 7, 213.	1.2	27
65	Genetic Control of Alternative Splicing in the TAP2 Gene: Possible Implication in the Genetics of Type 1 Diabetes. Diabetes, 2007, 56, 270-275.	0.3	27
66	High Prevalence of a Monogenic Cause in Han Chinese Diagnosed With Type 1 Diabetes, Partly Driven by Nonsyndromic Recessive <i>WFS1</i> Mutations. Diabetes, 2020, 69, 121-126.	0.3	26
67	Endocrine and Growth Abnormalities in 4H Leukodystrophy Caused by Variants in <i>POLR3A</i> , <i>POLR3B</i> , and <i>POLR1C</i> . Journal of Clinical Endocrinology and Metabolism, 2021, 106, e660-e674.	1.8	26
68	TheInsulin-Like Growth Factor-II ReceptorGene Is Associated with Type 1 Diabetes: Evidence of a Maternal Effect. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 5700-5706.	1.8	25
69	Mannose 6-phosphate increases the affinity of its cation-independent receptor for insulin-like growth factor II by displacing inhibitory endogenous ligands. Biochemical and Biophysical Research Communications, 1988, 157, 632-638.	1.0	23
70	Gene-Specific Function Prediction for Non-Synonymous Mutations in Monogenic Diabetes Genes. PLoS ONE, 2014, 9, e104452.	1.1	23
71	Study of Transcriptional Effects in Cis at the IFIH1 Locus. PLoS ONE, 2010, 5, e11564.	1.1	21
72	Evaluation of Polymorphic Splicing in the Mechanism of the Association of the Insulin Gene With Diabetes. Diabetes, 2007, 56, 709-713.	0.3	20

#	Article	IF	CITATIONS
73	A <i>cis</i> -Acting Regulatory Variant in the <i>IL2RA</i> Locus. Journal of Immunology, 2009, 183, 5158-5162.	0.4	20
74	Monogenic and Other Unusual Causes of Diabetes Mellitus. Pediatric Clinics of North America, 2005, 52, 1637-1650.	0.9	19
75	Genetic variations at the human <i>growth hormone receptor (GHR)</i> gene locus are associated with idiopathic short stature. Journal of Cellular and Molecular Medicine, 2017, 21, 2985-2999.	1.6	19
76	Class III Alleles of the Variable Number of Tandem Repeat Insulin Polymorphism Associated with Silencing of Thymic Insulin Predispose to Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 3705-3710.	1.8	19
77	Imprinting defects in mouse embryos: stochastic errors or polymorphic phenotype?. Genesis, 2001, 31, 11-16.	0.8	18
78	Minor contribution ofÂSMAD7 andÂKLF10 variants toÂgenetic susceptibility ofÂtype 2Âdiabetes. Diabetes and Metabolism, 2007, 33, 372-378.	1.4	18
79	The TCF7L2locus and type 1 diabetes. BMC Medical Genetics, 2007, 8, 51.	2.1	18
80	Clinically Relevant Circulating Protein Biomarkers for Type 1 Diabetes: Evidence From a Two-Sample Mendelian Randomization Study. Diabetes Care, 2022, 45, 169-177.	4.3	18
81	Evaluation of Conventional Blood Glucose Monitoring as an Indicator of Integrated Glucose Values Using a Continuous Subcutaneous Sensor. Diabetes Care, 2002, 25, 1603-1606.	4.3	17
82	Functional evaluation of the autoimmunity-associated CTLA4 gene: The effect of the (AT) repeat in the 3′untranslated region (UTR). Journal of Autoimmunity, 2006, 27, 105-109.	3.0	17
83	Genome-wide search for exonic variants affecting translational efficiency. Nature Communications, 2013, 4, 2260.	5.8	17
84	A founder <i>AGL</i> mutation causing glycogen storage disease type Illa in Inuit identified through whole-exome sequencing: a case series. Cmaj, 2015, 187, E68-E73.	0.9	17
85	The common, autoimmunity-predisposing 620ArgÂ>ÂTrp variant of PTPN22 modulates macrophage function and morphology. Journal of Autoimmunity, 2017, 79, 74-83.	3.0	17
86	Absence of an Obvious Molecular Imprinting Mechanism in a Human Fetus with MonoallelicIGF2RExpression. Biochemical and Biophysical Research Communications, 1998, 245, 272-277.	1.0	16
87	Common and rare alleles as causes of complex phenotypes. Current Atherosclerosis Reports, 2008, 10, 194-200.	2.0	16
88	In silico replication of the genome-wide association results of the Type 1 Diabetes Genetics Consortium. Human Molecular Genetics, 2010, 19, 2534-2538.	1.4	16
89	Fine points in mapping autoimmunity. Nature Genetics, 2011, 43, 1173-1174.	9.4	16
90	Functional evaluation of the role of C-type lectin domain family 16A at the chromosome 16p13 locus. Clinical and Experimental Immunology, 2014, 175, 485-497.	1.1	16

#	Article	IF	CITATIONS
91	The association between type 1 diabetes and the ITPR3 gene polymorphism due to linkage disequilibrium with HLA class II. Genes and Immunity, 2008, 9, 264-266.	2.2	15
92	One year remission of type 1 diabetes mellitus in a patient treated with sitagliptin. Endocrinology, Diabetes and Metabolism Case Reports, 2014, 2014, 140072.	0.2	15
93	The Role of Cell Age in the Difference in Insulin Binding between Adult and Cord Erythrocytes*. Journal of Clinical Endocrinology and Metabolism, 1982, 55, 290-294.	1.8	14
94	Sequence Variation in Promoter of Ica1 Gene, Which Encodes Protein Implicated in Type 1 Diabetes, Causes Transcription Factor Autoimmune Regulator (AIRE) to Increase Its Binding and Down-regulate Expression. Journal of Biological Chemistry, 2012, 287, 17882-17893.	1.6	14
95	Animal models of spontaneous autoimmune diabetes: Notes on their relevance to the human disease. Current Diabetes Reports, 2004, 4, 151-154.	1.7	13
96	Regulation of insulin gene expression by cytokines and cell–cell interactions in mouse medullary thymic epithelial cells. Diabetologia, 2009, 52, 2151-2158.	2.9	13
97	Monogenic Causes in the Type 1 Diabetes Genetics Consortium Cohort: Low Genetic Risk for Autoimmunity in Case Selection. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 1804-1810.	1.8	13
98	ENDOCYTOSIS OF RECEPTOR-BOUND INSULIN-LIKE GROWTH FACTOR II IS ENHANCED BY MANNOSE-6-PHOSPHATE IN IM9 CELLS. Endocrinology, 1988, 123, 2146-2148.	1.4	11
99	Overexpression of ZAC impairs glucoseâ€stimulated insulin translation and secretion in clonal pancreatic betaâ€cells. Diabetes/Metabolism Research and Reviews, 2012, 28, 645-653.	1.7	11
100	Early onset diabetes mellitus. Tip or iceberg?. Pediatric Diabetes, 2004, 5, 171-173.	1.2	10
101	The IRF5 polymorphism in type 1 diabetes. Journal of Medical Genetics, 2007, 44, 670-672.	1.5	10
102	Differential expression pattern of ZAC in developing mouse and human pancreas. Journal of Molecular Histology, 2011, 42, 129-136.	1.0	10
103	RFX6 is needed for the development and maintenance of the \hat{I}^2 -cell phenotype. Islets, 2011, 3, 291-293.	0.9	10
104	Screening for novel lead compounds increasing insulin expression in medullary thymic epithelial cells. European Journal of Pharmacology, 2012, 688, 84-89.	1.7	10
105	Functional characterization of the Thr946Ala SNP at the type 1 diabetesIFIH1locus. Autoimmunity, 2014, 47, 40-45.	1.2	10
106	Diabetes in the post-GWAS era. Nature Genetics, 2015, 47, 1373-1374.	9.4	10
107	Causal variants in Maturity Onset Diabetes of the Young (MODY) – A systematic review. BMC Endocrine Disorders, 2021, 21, 223.	0.9	10
108	ENDOCYTOSIS OF RECEPTOR-BOUND INSULIN-LIKE GROWTH FACTOR II IS ENHANCED BY MANNOSE-6-PHOSPHATE IN IM9 CELLS. Endocrinology, 1988, 123, 2943-2945.	1.4	9

#	Article	IF	CITATIONS
109	Assessment of blood glucose self-monitoring skills in a camp for diabetic children: the effects of individualized feedback counselling. Patient Education and Counseling, 1996, 29, 5-11.	1.0	9
110	tRNA methyltransferase 10 homologue A (<i>TRMT10A</i>) mutation in a Chinese patient with diabetes, insulin resistance, intellectual deficiency and microcephaly. BMJ Open Diabetes Research and Care, 2020, 8, e001601.	1.2	9
111	Genetic architecture of type 1 diabetes with low genetic risk score informed by 41 unreported loci. Communications Biology, 2021, 4, 908.	2.0	9
112	Familial Clustering Strongly Suggests that the Phenotypic Variation of the 8344 A>G Lys Mitochondrial tRNA Mutation is Encoded in <i>cis</i> . Annals of Human Genetics, 2012, 76, 296-300.	0.3	8
113	Parental Imprinting of the Genes for IGF-II and Its Receptor. Advances in Experimental Medicine and Biology, 1994, 343, 189-203.	0.8	8
114	Somatic Mutations and Autoimmunity. Cells, 2021, 10, 2056.	1.8	7
115	Enhancement of Cytosolic Tyrosine Kinase Activity by Propylthiouracil-Induced Hyperplasia in the Rat Thyroid*. Endocrinology, 1989, 124, 505-510.	1.4	6
116	Gene expression as a quantitative trait: what about translation?. Journal of Medical Genetics, 2012, 49, 554-557.	1.5	6
117	Effect of autoimmunity risk loci on the honeymoon phase in type 1 diabetes. Pediatric Diabetes, 2017, 18, 459-462.	1.2	6
118	Exome diagnostics: already a reality?. Journal of Medical Genetics, 2011, 48, 579-579.	1.5	5
119	New insights into the genetics of neonatal diabetes. Reviews in Endocrine and Metabolic Disorders, 2003, 4, 19-22.	2.6	4
120	Lack of association of type 1 diabetes with the IL4R gene. Diabetologia, 2006, 49, 958-961.	2.9	4
121	Insulin auto-immunity: implications for the prevention of Type 1 diabetes mellitus. Expert Review of Clinical Immunology, 2009, 5, 55-62.	1.3	4
122	Yeast one-hybrid screen of a thymus epithelial library identifies ZBTB7A as a regulator of thymic insulin expression. Molecular Immunology, 2013, 56, 637-642.	1.0	4
123	Self-antigen expression in thymic epithelial cells in Ifn-γ or Tnf-α deficiency. Cytokine, 2013, 62, 433-438.	1.4	4
124	Impact of the Human Genome Project on Pediatric Endocrinology. Hormone Research in Paediatrics, 2003, 59, 55-65.	0.8	3
125	No association of type 1 diabetes with a functional polymorphism of the LRAP gene. Molecular Immunology, 2007, 44, 2135-2138.	1.0	3
126	Public funding for genomics: where does Canada stand?. Journal of Medical Genetics, 2012, 49, 481-482.	1.5	3

#	Article	IF	CITATIONS
127	The Effect of Type 2 Diabetes Risk Loci on Insulin Requirements in Type 1 Diabetes. Hormone Research in Paediatrics, 2012, 77, 305-308.	0.8	3
128	New applications of microarray data analysis: integrating genetics with â€~Omics'. Pharmacogenomics, 2008, 9, 15-17.	0.6	2
129	Unique author identifier; what are we waiting for?. Journal of Medical Genetics, 2012, 49, 75-75.	1.5	2
130	Expression profile of a clonal insulin-expressing epithelial cell in the thymus. Molecular Immunology, 2013, 56, 804-810.	1.0	2
131	Clonal copy-number mosaicism in autoreactive T lymphocytes in diabetic NOD mice. Genome Research, 2019, 29, 1951-1961.	2.4	2
132	Why all MODY variants are dominantly inherited: a hypothesis. Trends in Genetics, 2021, , .	2.9	2
133	Genetic Testing in Clinical Endocrinology. Hormones, 2003, 2, 201-210.	0.9	2
134	Screening for Type 2 Diabetes in Overweight Adolescents in a High School Setting. Canadian Journal of Diabetes, 2007, 31, 125-130.	0.4	1
135	Zeroing in on the target. Pediatric Diabetes, 2010, 11, 2-3.	1.2	1
136	The Genetic Basis of Diabetes. , 2009, , 377-413.		1
137	Genetic variation and health; towards individualized medicine. Pediatric Endocrinology Reviews, 2004, 1 Suppl 3, 540-4.	1.2	1
138	Programmed cell death in the pathogenesis of autoimmune diabetes. Advances in Cell Aging and Gerontology, 2001, 6, 55-79.	0.1	0
139	Special issue on structural genomic alterations: ready for prime time. Journal of Medical Genetics, 2011, 48, 289-289.	1.5	0
140	Response to 'Familial risks in understanding type 1 diabetes genetics'. Nature Reviews Genetics, 2012, 13, 146-146.	7.7	0
141	The busy physician's guide to genetics, genomics and personalized medicine. Journal of Medical Genetics, 2013, 50, 784-784.	1.5	0
142	General Principles of Endocrine Genetics. , 2019, , 23-30.		0
143	The Insulin VNTR in the Genetics of Type 1 Diabetes. Growth Hormone, 2001, , 65-77.	0.2	0
144	Comprehensive genetic screening reveals wide spectrum of genetic variants in monogenic forms of diabetes among Pakistani population. World Journal of Diabetes, 2021, 12, 1957-1966.	1.3	0

#	Article	IF	CITATIONS
145	The insulin hypersecretion hypothesis: cause or effect?. Diabetologia, 2022, 65, 582-582.	2.9	0
146	Arg>Trp Polymorphism Improves Macrophage-Mediated Adipocyte Homeostasis. Biomedical and Environmental Sciences, 2021, 34, 241-246.	0.2	0