
Eric Keven Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6043805/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Xylooligosaccharides and their chemical stability under high-pressure processing combined with heat treatment. Food Hydrocolloids, 2022, 124, 107167.	5.6	8
2	Sonoprocessing of freshly squeezed orange juice: Ascorbic acid content, pectin methylesterase activity, rheological properties and cloud stability. Food Control, 2022, 131, 108391.	2.8	22
3	Mechanism, kinetics, and physicochemical properties of ultrasound-produced emulsions stabilized by lentil protein: a non-dairy alternative in food systems. European Food Research and Technology, 2022, 248, 185-196.	1.6	16
4	Impact of thermosonication processing on the phytochemicals, fatty acid composition and volatile organic compounds of almond-based beverage. LWT - Food Science and Technology, 2022, 154, 112579.	2.5	9
5	Innovative technologies for manufacturing plant-based non-dairy alternative milk and their impact on nutritional, sensory and safety aspects. Future Foods, 2022, 5, 100098.	2.4	39
6	Ultrasound-assisted production of emulsion-filled pectin hydrogels to encapsulate vitamin complex: Impact of the addition of xylooligosaccharides, ascorbic acid and supercritical CO2 drying. Innovative Food Science and Emerging Technologies, 2022, 76, 102907.	2.7	15
7	Low-frequency ultrasound-assisted esterification of Bixa orellana L. seed starch with octenyl succinic anhydride. International Journal of Biological Macromolecules, 2022, 207, 1-8.	3.6	5
8	Impact of Thermosonication Processing on Food Quality and Safety: a Review. Food and Bioprocess Technology, 2022, 15, 1700-1728.	2.6	12
9	Ultrasound emulsification energy strategies impact the encapsulation efficiency of essential oils in colloidal systems. Journal of Molecular Liquids, 2022, 358, 119179.	2.3	6
10	Study of the reaction between genipin and amino acids, dairy proteins, and milk to form a blue colorant ingredient. Food Research International, 2022, 157, 111240.	2.9	10
11	Whey Beverage Emulsified System as Carrying Matrix of Fennel Seed Extract Obtained by Supercritical CO2 Extraction: Impact of Thermosonication Processing and Addition of Prebiotic Fibers. Foods, 2022, 11, 1332.	1.9	2
12	A techno-economic evaluation for the genipin recovery from Genipa americana L. employing non-thermal and thermal high-intensity ultrasound treatments. Separation and Purification Technology, 2021, 258, 117978.	3.9	11
13	Inulin/fructooligosaccharides/pectin-based structured systems: Promising encapsulating matrices of polyphenols recovered from jabuticaba peel. Food Hydrocolloids, 2021, 111, 106387.	5.6	25
14	High-intensity ultrasound-assisted recovery of anthocyanins from jabuticaba by-products using green solvents: Effects of ultrasound intensity and solvent composition on the extraction of phenolic compounds. Food Research International, 2021, 140, 110048.	2.9	40
15	Anthocyanins Recovered from Agri-Food By-Products Using Innovative Processes: Trends, Challenges, and Perspectives for Their Application in Food Systems. Molecules, 2021, 26, 2632.	1.7	30
16	Impact of thermosonication pretreatment on the production of plant protein-based natural blue colorants. Journal of Food Engineering, 2021, 299, 110512.	2.7	9
17	Natural blue food colorants: Consumer acceptance, current alternatives, trends, challenges, and future strategies. Trends in Food Science and Technology, 2021, 112, 163-173.	7.8	57
18	Low-Frequency Ultrasound Coupled with High-Pressure Technologies: Impact of Hybridized Techniques on the Recovery of Phytochemical Compounds. Molecules, 2021, 26, 5117.	1.7	14

#	Article	IF	CITATIONS
19	Fructans with different degrees of polymerization and their performance as carrier matrices of spray dried blue colorant. Carbohydrate Polymers, 2021, 270, 118374.	5.1	8
20	Recovering phenolic compounds from Eugenia calycina Cambess employing high-intensity ultrasound treatments: A comparison among its leaves, fruit pulp, and seed as promising sources of bioactive compounds. Separation and Purification Technology, 2021, 272, 118920.	3.9	9
21	Manufacturing natural blue colorant from genipin-crosslinked milk proteins: Does the heat treatment applied to raw milk influence the production of blue compounds?. Future Foods, 2021, 4, 100059.	2.4	6
22	Xylooligosaccharides as an innovative carrier matrix of spray-dried natural blue colorant. Food Hydrocolloids, 2021, 121, 107017.	5.6	10
23	Green Processes in Foodomics: Biorefineries in the Food Industry. , 2021, , 808-824.		3
24	Advances and innovations associated with the use of acoustic energy in food processing: An updated review. Innovative Food Science and Emerging Technologies, 2021, 74, 102863.	2.7	22
25	Thermosonication Process Design for Recovering Bioactive Compounds from Fennel: A Comparative Study with Conventional Extraction Techniques. Applied Sciences (Switzerland), 2021, 11, 12104.	1.3	11
26	High-intensity ultrasound-assisted formation of cellulose nanofiber scaffold with low and high lignin content and their cytocompatibility with gingival fibroblast cells. Ultrasonics Sonochemistry, 2020, 64, 104759.	3.8	32
27	How does the degree of inulin polymerization affect the bioaccessibility of bioactive compounds from soursop whey beverage during in vitro gastrointestinal digestion?. Food Hydrocolloids, 2020, 101, 105511.	5.6	28
28	Clove essential oil emulsion-filled cellulose nanofiber hydrogel produced by high-intensity ultrasound technology for tissue engineering applications. Ultrasonics Sonochemistry, 2020, 64, 104845.	3.8	29
29	Biorefinery of turmeric (<i>Curcuma longa</i> L.) using non-thermal and clean emerging technologies: an update on the curcumin recovery step. RSC Advances, 2020, 10, 112-121.	1.7	24
30	Xylooligosaccharides chemical stability after high-intensity ultrasound processing of prebiotic orange juice. Ultrasonics Sonochemistry, 2020, 63, 104942.	3.8	51
31	High-intensity ultrasound energy density: How different modes of application influence the quality parameters of a dairy beverage. Ultrasonics Sonochemistry, 2020, 63, 104928.	3.8	33
32	Supercritical CO2 Processing of a Functional Beverage Containing Apple Juice and Aqueous Extract of Pfaffia glomerata Roots: Fructooligosaccharides Chemical Stability after Non-Thermal and Thermal Treatments. Molecules, 2020, 25, 3911.	1.7	13
33	High-intensity ultrasound-assisted recovery of cinnamyl alcohol glycosides from Rhodiola rosea roots: Effect of probe diameter on the ultrasound energy performance for the extraction of bioactive compounds. Food and Bioproducts Processing, 2020, 122, 245-253.	1.8	27
34	Ultrasound stabilization of raw milk: Microbial and enzymatic inactivation, physicochemical properties and kinetic stability. Ultrasonics Sonochemistry, 2020, 67, 105185.	3.8	64
35	Milk colloidal system as a reaction medium and carrier for the natural blue colorant obtained from the cross-linking between genipin and milk proteins. Innovative Food Science and Emerging Technologies, 2020, 61, 102333.	2.7	13
36	Supercritical carbon dioxide technology: A promising technique for the non-thermal processing of freshly fruit and vegetable juices. Trends in Food Science and Technology, 2020, 97, 381-390.	7.8	62

#	Article	IF	CITATIONS
37	Inulin thermal stability in prebiotic carbohydrate-enriched araticum whey beverage. LWT - Food Science and Technology, 2020, 128, 109418.	2.5	20
38	Low-frequency and high-power ultrasound-assisted production of natural blue colorant from the milk and unripe Genipa americana L. Ultrasonics Sonochemistry, 2020, 66, 105068.	3.8	17
39	Effects of supercritical carbon dioxide and thermal treatment on the inulin chemical stability and functional properties of prebiotic-enriched apple juice. Food Research International, 2019, 125, 108561.	2.9	34
40	Mutamba seed mucilage as a novel emulsifier: Stabilization mechanisms, kinetic stability and volatile compounds retention. Food Hydrocolloids, 2019, 97, 105190.	5.6	33
41	Non-thermal processing of inulin-enriched soursop whey beverage using supercritical carbon dioxide technology. Journal of Supercritical Fluids, 2019, 154, 104635.	1.6	19
42	Supercritical Antisolvent Precipitation Process. SpringerBriefs in Applied Sciences and Technology, 2019, , .	0.2	1
43	Effect of high-intensity ultrasound on the nutritional profile and volatile compounds of a prebiotic soursop whey beverage. Ultrasonics Sonochemistry, 2019, 55, 157-164.	3.8	99
44	Obtaining a novel mucilage from mutamba seeds exploring different high-intensity ultrasound process conditions. Ultrasonics Sonochemistry, 2019, 55, 332-340.	3.8	39
45	Effects of high-intensity ultrasound process parameters on the phenolic compounds recovery from araticum peel. Ultrasonics Sonochemistry, 2019, 50, 82-95.	3.8	61
46	Obtaining functional powder tea from Brazilian ginseng roots: Effects of freeze and spray drying processes on chemical and nutritional quality, morphological and redispersion properties. Food Research International, 2019, 116, 932-941.	2.9	30
47	Physicochemical, morphological, thermal and pasting properties of a novel native starch obtained from annatto seeds. Food Hydrocolloids, 2019, 89, 321-329.	5.6	34
48	Effects of ultrasonication on the characteristics of emulsions and microparticles containing Indian clove essential oil. Drying Technology, 2019, 37, 1162-1172.	1.7	7
49	Trends and Challenges in the Industrialization of Natural Colorants. Food and Public Health, 2019, 9, 33-44.	2.0	21
50	Specific Energy: A New Approach to Ultrasound-assisted Extraction of Natural Colorants. Food and Public Health, 2019, 9, 45-52.	2.0	18
51	Precipitation of Particles Using Combined High Turbulence Extraction Assisted by Ultrasound and Supercritical Antisolvent Fractionation. SpringerBriefs in Applied Sciences and Technology, 2019, , 35-49.	0.2	0
52	Effect of Process Conditions on the Morphological Characteristics of Particles Obtained by Supercritical Antisolvent Precipitation. SpringerBriefs in Applied Sciences and Technology, 2019, , 17-33.	0.2	0
53	Recent Developments in Particle Formation with Supercritical Fluid Extraction of Emulsions Process for Encapsulation. SpringerBriefs in Applied Sciences and Technology, 2019, , 51-64.	0.2	4
54	Supercritical Fluid Extraction of Emulsion Obtained by Ultrasound Emulsification Assisted by Nitrogen Hydrostatic Pressure Using Novel Biosurfactant. SpringerBriefs in Applied Sciences and Technology, 2019, , 65-74.	0.2	0

#	Article	IF	CITATIONS
55	Economical Effects of Supercritical Antisolvent Precipitation Process Conditions. SpringerBriefs in Applied Sciences and Technology, 2019, , 75-82.	0.2	1
56	Effect of whey protein isolate films incorporated with montmorillonite and citric acid on the preservation of fresh-cut apples. Food Research International, 2018, 107, 306-313.	2.9	63
57	Technological characterization of biomass obtained from the turmeric and annatto processing by using green technologies. Journal of Cleaner Production, 2018, 189, 231-239.	4.6	22
58	Non-thermal emerging technologies and their effects on the functional properties of dairy products. Current Opinion in Food Science, 2018, 22, 62-66.	4.1	48
59	Whey-grape juice drink processed by supercritical carbon dioxide technology: Physical properties and sensory acceptance. LWT - Food Science and Technology, 2018, 92, 80-86.	2.5	47
60	Physicochemical changes and microbial inactivation after high-intensity ultrasound processing of prebiotic whey beverage applying different ultrasonic power levels. Ultrasonics Sonochemistry, 2018, 44, 251-260.	3.8	119
61	Coupling of high-intensity ultrasound and mechanical stirring for producing food emulsions at low-energy densities. Ultrasonics Sonochemistry, 2018, 47, 114-121.	3.8	22
62	Whey-grape juice drink processed by supercritical carbon dioxide technology: Physicochemical characteristics, bioactive compounds and volatile profile. Food Chemistry, 2018, 239, 697-703.	4.2	69
63	Manufacturing a prebiotic whey beverage exploring the influence of degree of inulin polymerization. Food Hydrocolloids, 2018, 77, 787-795.	5.6	59
64	Effects of ultrasound energy density on the non-thermal pasteurization of chocolate milk beverage. Ultrasonics Sonochemistry, 2018, 42, 1-10.	3.8	95
65	Non-thermal microbial inactivation by using supercritical carbon dioxide: Synergic effect of process parameters. Journal of Supercritical Fluids, 2018, 139, 97-104.	1.6	35
66	Survival variability of 12 strains of Bacillus cereus yielded to spray drying of whole milk. International Journal of Food Microbiology, 2018, 286, 80-89.	2.1	16
67	Process Engineering Applying Supercritical Technology for Obtaining Functional and Therapeutic Products. , 2018, , 327-358.		1
68	Influence of the addition of microencapsulated Swiss cheese bioaroma on the technical and sensory qualities of cheese bread. International Journal of Dairy Technology, 2017, 70, 372-379.	1.3	8
69	Dairy processing using supercritical carbon dioxide technology: Theoretical fundamentals, quality and safety aspects. Trends in Food Science and Technology, 2017, 64, 94-101.	7.8	84
70	Microencapsulated ginger oil properties: Influence of operating parameters. Drying Technology, 2017, 35, 1098-1107.	1.7	18
71	Proposing Novel Encapsulating Matrices for Spray-Dried Ginger Essential Oil from the Whey Protein Isolate-Inulin/Maltodextrin Blends. Food and Bioprocess Technology, 2017, 10, 115-130.	2.6	55

Encapsulation of Bioactive Compounds Using Ultrasonic Technology. , 2017, , 323-350.

3

#	Article	IF	CITATIONS
73	Understanding the Influence of Encapsulating Matrix on the Physical and Thermal Properties of Oregano Essential Oil Powder. International Journal of Horticulture & Agriculture, 2017, 2, 1-8.	0.1	2
74	Nanoencapsulation of flavors and aromas by emerging technologies. , 2016, , 89-126.		5
75	Replacing modified starch by inulin as prebiotic encapsulant matrix of lipophilic bioactive compounds. Food Research International, 2016, 85, 26-35.	2.9	44
76	Microencapsulation of lipophilic bioactive compounds using prebiotic carbohydrates: Effect of the degree of inulin polymerization. Carbohydrate Polymers, 2016, 152, 775-783.	5.1	40
77	Study of ultrasound-assisted emulsions on microencapsulation of ginger essential oil by spray drying. Industrial Crops and Products, 2016, 94, 413-423.	2.5	99
78	Cashew gum and inulin: New alternative for ginger essential oil microencapsulation. Carbohydrate Polymers, 2016, 153, 133-142.	5.1	85
79	Ultrasound-assisted encapsulation of annatto seed oil: Whey protein isolate versus modified starch. Food Hydrocolloids, 2016, 56, 71-83.	5.6	86
80	Biopolymer-prebiotic carbohydrate blends and their effects on the retention of bioactive compounds and maintenance of antioxidant activity. Carbohydrate Polymers, 2016, 144, 149-158.	5.1	46
81	Obtaining annatto seed oil miniemulsions by ultrasonication using aqueous extract from Brazilian ginseng roots as a biosurfactant. Journal of Food Engineering, 2016, 168, 68-78.	2.7	23
82	Effect of carrier agents on the physical and thermal stability of freeze-dried passion fruit (<i>Passiflora edulis f. flavicarpa</i>) pulp. Drying Technology, 2016, 34, 713-722.	1.7	6
83	Ultrasound-assisted formation of emulsions stabilized by biopolymers. Current Opinion in Food Science, 2015, 5, 50-59.	4.1	44
84	Microencapsulation of Swiss cheese bioaroma by spray-drying: Process optimization and characterization of particles. Powder Technology, 2015, 274, 296-304.	2.1	42
85	Ultrasound-assisted formation of annatto seed oil emulsions stabilized by biopolymers. Food Hydrocolloids, 2015, 47, 1-13.	5.6	108
86	Physical and Thermal Stability of Spray-Dried Swiss Cheese Bioaroma Powder. Drying Technology, 2015, 33, 346-354.	1.7	19
87	Influence of the degree of inulin polymerization on the ultrasound-assisted encapsulation of annatto seed oil. Carbohydrate Polymers, 2015, 133, 578-586.	5.1	73
88	Development of whey protein isolate bio-nanocomposites: Effect of montmorillonite and citric acid on structural, thermal, morphological and mechanical properties. Food Hydrocolloids, 2015, 48, 179-188.	5.6	73
89	Ultrasound-assisted encapsulation of annatto seed oil: Retention and release of a bioactive compound with functional activities. Food Research International, 2015, 78, 159-168.	2.9	61
90	Thermodynamic properties, kinetics and adsorption mechanisms of Swiss cheese bioaroma powder. Powder Technology, 2015, 272, 181-188.	2.1	9

#	Article	IF	CITATIONS
91	Physical and Thermal Properties of Oregano (<scp><i>O</i></scp> <i>riganum) Tj ETQq1 1 0.784314 rgBT /Overl 1-10.</i>	ock 10 Tf 1.5	50 747 Td (73
92	Whey protein isolate biodegradable films: Influence of the citric acid and montmorillonite clay nanoparticles on the physical properties. Food Hydrocolloids, 2015, 43, 252-258.	5.6	57
93	Water adsorption in rosemary essential oil microparticles: Kinetics, thermodynamics and storage conditions. Journal of Food Engineering, 2014, 140, 39-45.	2.7	36
94	Spray Drying of Green Corn Pulp. Drying Technology, 2014, 32, 861-868.	1.7	10
95	Análise de Modos e Efeitos de Falha na avaliação dos impactos ambientais provenientes do abate animal. Engenharia Sanitaria E Ambiental, 2014, 19, 79-86.	0.1	4
96	Encapsulation of Food Compounds Using Supercritical Technologies: Applications of Supercritical Carbon Dioxide as an Antisolvent. Food and Public Health, 2014, 4, 247-258.	2.0	35
97	Microencapsulation of Rosemary Essential Oil: Characterization of Particles. Drying Technology, 2013, 31, 1245-1254.	1.7	78
98	Matrix structure selection in the microparticles of essential oil oregano produced by spray dryer. Journal of Microencapsulation, 2013, 30, 717-727.	1.2	44
99	Optical and structural properties of biodegradable whey protein isolate nanocomposite films for active packaging. International Journal of Food Properties, 0, , 1-10.	1.3	6