Steven Henikoff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6042874/publications.pdf Version: 2024-02-01

363 papers	85,195 citations	588 125 h-index	410 277 g-index
419	419	419	78146
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Global and context-specific transcriptional consequences of oncogenic Fbw7 mutations. ELife, 2022, 11, .	6.0	6
2	Managing the Steady State Chromatin Landscape by Nucleosome Dynamics. Annual Review of Biochemistry, 2022, 91, 183-195.	11.1	16
3	CUT&Tag2for1: a modified method for simultaneous profiling of the accessible and silenced regulome in singleÂcells. Genome Biology, 2022, 23, 81.	8.8	30
4	The genetics and epigenetics of satellite centromeres. Genome Research, 2022, 32, 608-615.	5.5	23
5	CUT&RUN Profiling of the Budding Yeast Epigenome. Methods in Molecular Biology, 2022, 2477, 129-147.	0.9	4
6	Viral histones: pickpocket's prize or primordial progenitor?. Epigenetics and Chromatin, 2022, 15, .	3.9	15
7	Histone variants at a glance. Journal of Cell Science, 2021, 134, .	2.0	101
8	Sequence, Chromatin and Evolution of Satellite DNA. International Journal of Molecular Sciences, 2021, 22, 4309.	4.1	104
9	The structure of a virus-encoded nucleosome. Nature Structural and Molecular Biology, 2021, 28, 413-417.	8.2	40
10	Single-cell CUT&Tag analysis of chromatin modifications in differentiation and tumor progression. Nature Biotechnology, 2021, 39, 819-824.	17.5	121
11	Remodeller–variant tag team slams transposons. Nature Cell Biology, 2021, 23, 297-298.	10.3	1
12	The H3.3K27M oncohistone antagonizes reprogramming in Drosophila. PLoS Genetics, 2021, 17, e1009225.	3.5	11
13	The Yin and Yang of Histone Marks in Transcription. Annual Review of Genomics and Human Genetics, 2021, 22, 147-170.	6.2	41
14	Simplified Epigenome Profiling Using Antibody-tethered Tagmentation. Bio-protocol, 2021, 11, e4043.	0.4	12
15	Short H2A histone variants are expressed in cancer. Nature Communications, 2021, 12, 490.	12.8	29
16	Automated CUT&Tag profiling of chromatin heterogeneity in mixed-lineage leukemia. Nature Genetics, 2021, 53, 1586-1596.	21.4	42
17	High-throughput single-cell epigenomic profiling by targeted insertion of promoters (TIP-seq). Journal of Cell Biology, 2021, 220, .	5.2	19
18	Epigenome Regulation by Dynamic Nucleosome Unwrapping. Trends in Biochemical Sciences, 2020, 45, 13-26.	7.5	69

#	Article	IF	CITATIONS
19	Efficient low-cost chromatin profiling with CUT&Tag. Nature Protocols, 2020, 15, 3264-3283.	12.0	181
20	Trans- and cis-acting effects of Firre on epigenetic features of the inactive X chromosome. Nature Communications, 2020, 11, 6053.	12.8	33
21	Evolution: Heterochromatin Diversity in Early-Branching Land Plants. Current Biology, 2020, 30, R161-R163.	3.9	2
22	MYCN amplification and ATRX mutations are incompatible in neuroblastoma. Nature Communications, 2020, 11, 913.	12.8	66
23	What makes a centromere?. Experimental Cell Research, 2020, 389, 111895.	2.6	123
24	Architectural RNA in chromatin organization. Biochemical Society Transactions, 2020, 48, 1967-1978.	3.4	36
25	Biparental contributions of the H2A.B histone variant control embryonic development in mice. PLoS Biology, 2020, 18, e3001001.	5.6	13
26	Histone deposition pathways determine the chromatin landscapes of H3.1 and H3.3 K27M oncohistones. ELife, 2020, 9, .	6.0	42
27	Efficient chromatin accessibility mapping in situ by nucleosome-tethered tagmentation. ELife, 2020, 9, .	6.0	78
28	Biparental contributions of the H2A.B histone variant control embryonic development in mice. , 2020, 18, e3001001.		0
29	Biparental contributions of the H2A.B histone variant control embryonic development in mice. , 2020, 18, e3001001.		0
30	Biparental contributions of the H2A.B histone variant control embryonic development in mice. , 2020, 18, e3001001.		0
31	Biparental contributions of the H2A.B histone variant control embryonic development in mice. , 2020, 18, e3001001.		0
32	Biparental contributions of the H2A.B histone variant control embryonic development in mice. , 2020, 18, e3001001.		0
33	Biparental contributions of the H2A.B histone variant control embryonic development in mice. , 2020, 18, e3001001.		0
34	<i>Max</i> deletion destabilizes MYC protein and abrogates Eµ- <i>Myc</i> lymphomagenesis. Genes and Development, 2019, 33, 1252-1264.	5.9	41
35	Peak calling by Sparse Enrichment Analysis for CUT&RUN chromatin profiling. Epigenetics and Chromatin, 2019, 12, 42.	3.9	267
36	Pioneer Factor-Nucleosome Binding Events during Differentiation Are Motif Encoded. Molecular Cell, 2019, 75, 562-575.e5.	9.7	98

#	Article	IF	CITATIONS
37	Bringing Oncohistones into the Fold. Cancer Discovery, 2019, 9, 1346-1348.	9.4	2
38	DUX4-Induced Histone Variants H3.X and H3.Y Mark DUX4 Target Genes for Expression. Cell Reports, 2019, 29, 1812-1820.e5.	6.4	34
39	Nucleosomes remember where they were. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20254-20256.	7.1	3
40	Quantitative MNase-seq accurately maps nucleosome occupancy levels. Genome Biology, 2019, 20, 198.	8.8	86
41	EvoChromo: towards a synthesis of chromatin biology and evolution. Development (Cambridge), 2019, 146, .	2.5	16
42	CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nature Communications, 2019, 10, 1930.	12.8	1,101
43	Chromatin Bottlenecks in Cancer. Trends in Cancer, 2019, 5, 183-194.	7.4	9
44	Old cogs, new tricks: the evolution of gene expression in a chromatin context. Nature Reviews Genetics, 2019, 20, 283-297.	16.3	86
45	Quantitative Measurement of Nucleosome Occupancy and DNA Accessibility. Biophysical Journal, 2019, 116, 73a.	0.5	0
46	RSC-Associated Subnucleosomes Define MNase-Sensitive Promoters in Yeast. Molecular Cell, 2019, 73, 238-249.e3.	9.7	107
47	Improved CUT&RUN chromatin profiling tools. ELife, 2019, 8, .	6.0	296
48	Targeted in situ genome-wide profiling with high efficiency for low cell numbers. Nature Protocols, 2018, 13, 1006-1019.	12.0	572
49	Unexpected conformational variations of the human centromeric chromatin complex. Genes and Development, 2018, 32, 20-25.	5.9	25
50	Non-B-Form DNA Is Enriched at Centromeres. Molecular Biology and Evolution, 2018, 35, 949-962.	8.9	110
51	Simple and Complex Centromeric Satellites in <i>Drosophila</i> Sibling Species. Genetics, 2018, 208, 977-990.	2.9	43
52	Simultaneous Discovery of Cell-Free DNA and the Nucleosome Ladder. Genetics, 2018, 209, 27-29.	2.9	9
53	Automated in situ chromatin profiling efficiently resolves cell types and gene regulatory programs. Epigenetics and Chromatin, 2018, 11, 74.	3.9	53
54	No strand left behind. Science, 2018, 361, 1311-1312.	12.6	12

#	Article	IF	CITATIONS
55	MINCE-Seq: Mapping In Vivo Nascent Chromatin with EdU and Sequencing. Methods in Molecular Biology, 2018, 1832, 159-168.	0.9	6
56	Pioneers Invade the Nucleosomal Landscape. Molecular Cell, 2018, 71, 193-194.	9.7	3
57	Precise genome-wide mapping of single nucleosomes and linkers in vivo. Genome Biology, 2018, 19, 19.	8.8	128
58	Transcribing Centromeres: Noncoding RNAs and Kinetochore Assembly. Trends in Genetics, 2018, 34, 587-599.	6.7	70
59	Darwin meets Waddington. Current Biology, 2018, 28, R682-R684.	3.9	2
60	Capitalizing on disaster: Establishing chromatin specificity behind the replication fork. BioEssays, 2017, 39, 1600150.	2.5	15
61	Histone variants on the move: substrates for chromatin dynamics. Nature Reviews Molecular Cell Biology, 2017, 18, 115-126.	37.0	268
62	Structural Biology: Probing the Origins of Chromatin. Current Biology, 2017, 27, R1118-R1120.	3.9	1
63	Transcription and Remodeling Produce Asymmetrically Unwrapped Nucleosomal Intermediates. Molecular Cell, 2017, 68, 1038-1053.e4.	9.7	104
64	Remarkable Evolutionary Plasticity of Centromeric Chromatin. Cold Spring Harbor Symposia on Quantitative Biology, 2017, 82, 71-82.	1.1	10
65	An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. ELife, 2017, 6,	6.0	1,119
66	CENPT bridges adjacent CENPA nucleosomes on young human α-satellite dimers. Genome Research, 2016, 26, 1178-1187.	5.5	41
67	Transcriptional Regulators Compete with Nucleosomes Post-replication. Cell, 2016, 165, 580-592.	28.9	139
68	Nucleosome dynamics during chromatin remodelingin vivo. Nucleus, 2016, 7, 20-26.	2.2	26
69	Mechanisms of Nucleosome Dynamics In Vivo. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a026666.	6.2	24
70	Epigenetics, cellular memory and gene regulation. Current Biology, 2016, 26, R644-R648.	3.9	148
71	Mediator binding to <scp>UAS</scp> s is broadly uncoupled from transcription and cooperative with <scp>TFIID</scp> recruitment to promoters. EMBO Journal, 2016, 35, 2435-2446.	7.8	64
72	Evolutionary Turnover of Kinetochore Proteins: A Ship of Theseus?. Trends in Cell Biology, 2016, 26, 498-510.	7.9	84

#	Article	IF	CITATIONS
73	Epigenome editing made easy. Nature Biotechnology, 2015, 33, 606-607.	17.5	17
74	A unique chromatin complex occupies young $\hat{I}\pm$ -satellite arrays of human centromeres. Science Advances, 2015, 1, .	10.3	86
75	Histone Variants and Epigenetics. Cold Spring Harbor Perspectives in Biology, 2015, 7, a019364.	5.5	275
76	Anthracyclines induce double-strand DNA breaks at active gene promoters. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2015, 773, 9-15.	1.0	80
77	Methylation-Sensitive Expression of a DNA Demethylase Gene Serves As an Epigenetic Rheostat. PLoS Genetics, 2015, 11, e1005142.	3.5	150
78	Epigenomic Landscapes Reflect Neuronal Diversity. Neuron, 2015, 86, 1319-1321.	8.1	1
79	Mapping Regulatory Factors by Immunoprecipitation from Native Chromatin. Current Protocols in Molecular Biology, 2015, 110, 21.31.1-21.31.25.	2.9	20
80	Diversity in the organization of centromeric chromatin. Current Opinion in Genetics and Development, 2015, 31, 28-35.	3.3	68
81	Inner Kinetochore Protein Interactions with Regional Centromeres of Fission Yeast. Genetics, 2015, 201, 543-561.	2.9	32
82	ChEC-seq kinetics discriminates transcription factor binding sites by DNA sequence and shape in vivo. Nature Communications, 2015, 6, 8733.	12.8	153
83	The Genetic Map Enters Its Second Century. Genetics, 2015, 200, 671-674.	2.9	0
84	Replicating nucleosomes. Science Advances, 2015, 1, .	10.3	67
85	Asymmetric nucleosomes flank promoters in the budding yeast genome. Genome Research, 2015, 25, 381-390.	5.5	96
86	A simple method for generating high-resolution maps of genome-wide protein binding. ELife, 2015, 4, e09225.	6.0	97
87	Holocentromeres are dispersed point centromeres localized at transcription factor hotspots. ELife, 2014, 3, e02025.	6.0	103
88	CENP-A octamers do not confer a reduction in nucleosome height by AFM. Nature Structural and Molecular Biology, 2014, 21, 4-5.	8.2	20
89	Histones push the envelope. Nature Structural and Molecular Biology, 2014, 21, 651-652.	8.2	0
90	Transcribing through the nucleosome. Trends in Biochemical Sciences, 2014, 39, 577-586.	7.5	141

#	Article	IF	CITATIONS
91	DNA torsion as a feedback mediator of transcription and chromatin dynamics. Nucleus, 2014, 5, 211-218.	2.2	49
92	Distinct chromatin features characterize different classes of repeat sequences in Drosophila melanogaster. BMC Genomics, 2014, 15, 105.	2.8	9
93	Nucleosomes Are Context-Specific, H2A.Z-Modulated Barriers to RNA Polymerase. Molecular Cell, 2014, 53, 819-830.	9.7	313
94	High-resolution mapping defines the cooperative architecture of Polycomb response elements. Genome Research, 2014, 24, 809-820.	5.5	53
95	Histone variants: dynamic punctuation in transcription. Genes and Development, 2014, 28, 672-682.	5.9	247
96	High-resolution mapping of transcription factor binding sites on native chromatin. Nature Methods, 2014, 11, 203-209.	19.0	170
97	Transcription-generated torsional stress destabilizes nucleosomes. Nature Structural and Molecular Biology, 2014, 21, 88-94.	8.2	183
98	5-Aza-CdR Delivers a Gene Body Blow. Cancer Cell, 2014, 26, 449-451.	16.8	11
99	Environmental responses mediated by histone variants. Trends in Cell Biology, 2014, 24, 642-650.	7.9	114
100	High-resolution digital profiling of the epigenome. Nature Reviews Genetics, 2014, 15, 814-827.	16.3	112
101	Doxorubicin, DNA torsion, and chromatin dynamics. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1845, 84-89.	7.4	394
102	The budding yeast Centromere DNA Element II wraps a stable Cse4 hemisome in either orientation in vivo. ELife, 2014, 3, e01861.	6.0	77
103	The nucleosomal barrier to promoter escape by RNA polymerase II is overcome by the chromatin remodeler Chd1. ELife, 2014, 3, e02042.	6.0	108
104	Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects. ELife, 2014, 3, .	6.0	174
105	Epigenetics & amp; Chromatin: interactions and processes. Epigenetics and Chromatin, 2013, 6, 2.	3.9	3
106	Phylogeny as the basis for naming histones. Trends in Genetics, 2013, 29, 499-500.	6.7	16
107	Histone variants in pluripotency and disease. Development (Cambridge), 2013, 140, 2513-2524.	2.5	127
108	TILLING and Ecotilling for Rice. Methods in Molecular Biology, 2013, 956, 39-56.	0.9	18

#	Article	IF	CITATIONS
109	Doxorubicin Enhances Nucleosome Turnover around Promoters. Current Biology, 2013, 23, 782-787.	3.9	89
110	The heat shock response: A case study of chromatin dynamics in gene regulation. Biochemistry and Cell Biology, 2013, 91, 42-48.	2.0	17
111	Regulation of nucleosome dynamics by histone modifications. Nature Structural and Molecular Biology, 2013, 20, 259-266.	8.2	770
112	Mot1 Redistributes TBP from TATA-Containing to TATA-Less Promoters. Molecular and Cellular Biology, 2013, 33, 4996-5004.	2.3	48
113	ISWI and CHD Chromatin Remodelers Bind Promoters but Act in Gene Bodies. PLoS Genetics, 2013, 9, e1003317.	3.5	79
114	Reconstitution of hemisomes on budding yeast centromeric DNA. Nucleic Acids Research, 2013, 41, 5769-5783.	14.5	41
115	The <i>CentO</i> satellite confers translational and rotational phasing on cenH3 nucleosomes in rice centromeres. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4875-83.	7.1	80
116	Cell-type-specific nuclei purification from whole animals for genome-wide expression and chromatin profiling. Genome Research, 2012, 22, 766-777.	5.5	112
117	Measuring Genome-Wide Nucleosome Turnover Using CATCH-IT. Methods in Enzymology, 2012, 513, 169-184.	1.0	11
118	Tripartite organization of centromeric chromatin in budding yeast. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 243-248.	7.1	91
119	"Point―Centromeres of <i>Saccharomyces</i> Harbor Single Centromere-Specific Nucleosomes. Genetics, 2012, 190, 1575-1577.	2.9	43
120	Surveying the epigenomic landscape, one base at a time. Genome Biology, 2012, 13, 250.	8.8	33
121	SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Research, 2012, 40, W452-W457.	14.5	1,838
122	Salt Fractionation of Nucleosomes for Genome-Wide Profiling. Methods in Molecular Biology, 2012, 833, 421-432.	0.9	32
123	Chromatin roadblocks to reprogramming 50 years on. BMC Biology, 2012, 10, 83.	3.8	4
124	A unified phylogeny-based nomenclature for histone variants. Epigenetics and Chromatin, 2012, 5, 7.	3.9	265
125	Chromatin: Packaging without Nucleosomes. Current Biology, 2012, 22, R1040-R1043.	3.9	11
126	The unconventional structure of centromeric nucleosomes. Chromosoma, 2012, 121, 341-352.	2.2	59

#	Article	IF	CITATIONS
127	Steven Henikoff. Current Biology, 2012, 22, R106-R107.	3.9	3
128	Surveying the epigenomic landscape, one base at a time. Genome Biology, 2012, 13, 250.	9.6	40
129	A Simple Method for Gene Expression and Chromatin Profiling of Individual Cell Types within a Tissue. Developmental Cell, 2011, 21, 1179.	7.0	0
130	Epigenome characterization at single base-pair resolution. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18318-18323.	7.1	325
131	Genomic Analysis of Parent-of-Origin Allelic Expression in Arabidopsis thaliana Seeds. PLoS ONE, 2011, 6, e23687.	2.5	178
132	The INTACT method for cell type–specific gene expression and chromatin profiling in Arabidopsis thaliana. Nature Protocols, 2011, 6, 56-68.	12.0	348
133	Histone modification: cause or cog?. Trends in Genetics, 2011, 27, 389-396.	6.7	415
134	Histone variants and modifications in plant gene regulation. Current Opinion in Plant Biology, 2011, 14, 116-122.	7.1	132
135	Heat shock reduces stalled RNA polymerase II and nucleosome turnover genome-wide. Genes and Development, 2011, 25, 2387-2397.	5.9	89
136	Epigenetic Inheritance of Centromeres. Cold Spring Harbor Symposia on Quantitative Biology, 2010, 75, 51-60.	1.1	45
137	Summary: The NucleusA Close-Knit Community of Dynamic Structures. Cold Spring Harbor Symposia on Quantitative Biology, 2010, 75, 607-615.	1.1	3
138	H2A.Z nucleosomes enriched over active genes are homotypic. Nature Structural and Molecular Biology, 2010, 17, 1500-1507.	8.2	109
139	A chromatin thermostat. Nature, 2010, 463, 887-888.	27.8	23
140	Histone variants — ancient wrap artists of the epigenome. Nature Reviews Molecular Cell Biology, 2010, 11, 264-275.	37.0	699
141	Genome-Wide Kinetics of Nucleosome Turnover Determined by Metabolic Labeling of Histones. Science, 2010, 328, 1161-1164.	12.6	431
142	Changes in H2A.Z occupancy and DNA methylation during B-cell lymphomagenesis. Genome Research, 2010, 20, 1383-1390.	5.5	112
143	Centromeres Convert but Don't Cross. PLoS Biology, 2010, 8, e1000326.	5.6	143
144	A Comprehensive Map of Insulator Elements for the Drosophila Genome. PLoS Genetics, 2010, 6, e1000814.	3.5	305

#	Article	IF	CITATIONS
145	A native chromatin purification system for epigenomic profiling in Caenorhabditis elegans. Nucleic Acids Research, 2010, 38, e26-e26.	14.5	58
146	Catching a glimpse of nucleosome dynamics. Cell Cycle, 2010, 9, 3389-3390.	2.6	6
147	Baculovirus-encoded protein expression for epigenomic profiling in Drosophila cells. Fly, 2010, 4, 258-265.	1.7	5
148	Integrative Analysis of the <i>Caenorhabditis elegans</i> Genome by the modENCODE Project. Science, 2010, 330, 1775-1787.	12.6	912
149	Identification of Functional Elements and Regulatory Circuits by <i>Drosophila</i> modENCODE. Science, 2010, 330, 1787-1797.	12.6	1,124
150	A Simple Method for Gene Expression and Chromatin Profiling of Individual Cell Types within a Tissue. Developmental Cell, 2010, 18, 1030-1040.	7.0	360
151	Capturing the dynamic epigenome. Genome Biology, 2010, 11, 218.	9.6	45
152	Genome-wide profiling of salt fractions maps physical properties of chromatin. Genome Research, 2009, 19, 460-469.	5.5	204
153	Chromatin-based transcriptional punctuation. Genes and Development, 2009, 23, 1037-1041.	5.9	21
154	DNA demethylation by DNA repair. Trends in Genetics, 2009, 25, 82-90.	6.7	232
155	Unlocking the secrets of the genome. Nature, 2009, 459, 927-930.	27.8	744
156	Labile H3.3+H2A.Z nucleosomes mark 'nucleosome-free regions'. Nature Genetics, 2009, 41, 865-866.	21.4	38
157	Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nature Protocols, 2009, 4, 1073-1081.	12.0	6,149
158	Evolution of Centromeres and Kinetochores: A Two-Part Fugue. , 2009, , 1-37.		10
159	Centromeric Nucleosomes Induce Positive DNA Supercoils. Cell, 2009, 138, 104-113.	28.9	193
160	Major Evolutionary Transitions in Centromere Complexity. Cell, 2009, 138, 1067-1082.	28.9	324
161	Response: Right-Handed Half-Nucleosomes at Centromeres. Cell, 2009, 139, 1217-1218.	28.9	10
162	Extensive Demethylation of Repetitive Elements During Seed Development Underlies Gene Imprinting. Science, 2009, 324, 1447-1451.	12.6	530

#	Article	IF	CITATIONS
163	Epigenetic Profiling of Histone Variants. , 2009, , 101-118.		2
164	Welcome to Epigenetics & Chromatin. Epigenetics and Chromatin, 2008, 1, 1.	3.9	10
165	Single-epitope recognition imaging of native chromatin. Epigenetics and Chromatin, 2008, 1, 10.	3.9	23
166	Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature, 2008, 456, 125-129.	27.8	508
167	Moving AHEAD with an international human epigenome project. Nature, 2008, 454, 711-715.	27.8	177
168	Nucleosome destabilization in the epigenetic regulation of gene expression. Nature Reviews Genetics, 2008, 9, 15-26.	16.3	404
169	TILLING to detect induced mutations in soybean. BMC Plant Biology, 2008, 8, 9.	3.6	259
170	Fly-TILL: Reverse genetics using a living point mutation resource. Fly, 2008, 2, 300-302.	1.7	23
171	Retention of Induced Mutations in a Drosophila Reverse-Genetic Resource. Genetics, 2008, 180, 661-667.	2.9	33
172	DNA Methylation and Demethylation in Arabidopsis. The Arabidopsis Book, 2008, 6, e0102.	0.5	27
173	Epigenomics: A Roadmap to Chromatin. Science, 2008, 322, 853-853.	12.6	9
174	Intergenic Locations of Rice Centromeric Chromatin. PLoS Biology, 2008, 6, e286.	5.6	81
175	DNA demethylation in the Arabidopsis genome. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6752-6757.	7.1	470
176	Tetrameric Structure of Centromeric Nucleosomes in Interphase Drosophila Cells. PLoS Biology, 2007, 5, e218.	5.6	210
177	Histone Replacement Marks the Boundaries of cis-Regulatory Domains. Science, 2007, 315, 1408-1411.	12.6	255
178	Germline histone dynamics and epigenetics. Current Opinion in Cell Biology, 2007, 19, 257-265.	5.4	112
179	Tilling and Ecotilling for Crop Improvement. , 2007, , 333-349.		31
180	Chemical- and Irradiation-Induced Mutants and TILLING. , 2007, , 148-180.		13

#	Article	IF	CITATIONS
181	Genome-wide analysis of DNA methylation patterns. Development (Cambridge), 2007, 134, 3959-3965.	2.5	224
182	Structure, dynamics, and evolution of centromeric nucleosomes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15974-15981.	7.1	125
183	ENCODE and our very busy genome. Nature Genetics, 2007, 39, 817-818.	21.4	16
184	Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nature Genetics, 2007, 39, 61-69.	21.4	1,257
185	Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biology, 2007, 7, 19.	3.6	406
186	DNA methylation dynamics in plant genomes. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2007, 1769, 276-286.	2.4	152
187	Nucleosomes at Active Promoters: Unforgettable Loss. Cancer Cell, 2007, 12, 407-409.	16.8	10
188	DNA demethylation by the baseâ \in excision DNA repair pathway in Arabidopsis. FASEB Journal, 2007, 21, .	0.5	0
189	Applying whole-genome studies of epigenetic regulation to study human disease. Cytogenetic and Genome Research, 2006, 114, 1-15.	1.1	54
190	Predicting the Effects of Amino Acid Substitutions on Protein Function. Annual Review of Genomics and Human Genetics, 2006, 7, 61-80.	6.2	811
191	High-throughput discovery of rare human nucleotide polymorphisms by Ecotilling. Nucleic Acids Research, 2006, 34, e99-e99.	14.5	49
192	TILLING: practical single-nucleotide mutation discovery. Plant Journal, 2006, 45, 684-694.	5.7	225
193	The epigenetic progenitor origin of human cancer. Nature Reviews Genetics, 2006, 7, 21-33.	16.3	1,642
194	Spreading of silent chromatin: inaction at a distance. Nature Reviews Genetics, 2006, 7, 793-803.	16.3	264
195	A protocol for TILLING and Ecotilling in plants and animals. Nature Protocols, 2006, 1, 2465-2477.	12.0	219
196	Centromeres put epigenetics in the driver's seat. Trends in Biochemical Sciences, 2006, 31, 662-669.	7.5	91
197	Biotin-Tag Affinity Purification of a Centromeric Nucleosome Assembly Complex. Cell Cycle, 2006, 5, 1269-1274.	2.6	19

198 High-Throughput TILLING for <i>Arabidopsis</i>., 2006, 323, 127-136.

#	Article	IF	CITATIONS
199	Histone H3.3 Variant Dynamics in the Germline of Caenorhabditis elegans. PLoS Genetics, 2006, 2, e97.	3.5	104
200	Chaperone-mediated assembly of centromeric chromatin <i>in vitro</i> . Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6172-6177.	7.1	128
201	Genome-scale profiling of histone H3.3 replacement patterns. Nature Genetics, 2005, 37, 1090-1097.	21.4	463
202	DNA Methylation Profiling Identifies CG Methylation Clusters in Arabidopsis Genes. Current Biology, 2005, 15, 154-159.	3.9	212
203	Positive Selection Drives the Evolution of rhino, a Member of the Heterochromatin Protein 1 Family in Drosophila. PLoS Genetics, 2005, 1, e9.	3.5	125
204	Positive Selection of Iris, a Retroviral Envelope–Derived Host Gene in Drosophila melanogaster. PLoS Genetics, 2005, 1, e44.	3.5	62
205	Transcription and Histone Modifications in the Recombination-Free Region Spanning a Rice Centromere[W]. Plant Cell, 2005, 17, 3227-3238.	6.6	107
206	Rapid Changes in Plant Genomes. Plant Cell, 2005, 17, 2852-2855.	6.6	15
207	Histone modifications: Combinatorial complexity or cumulative simplicity?. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5308-5309.	7.1	88
208	Automated band mapping in electrophoretic gel images using background information. Nucleic Acids Research, 2005, 33, 2806-2812.	14.5	65
209	Centromeric chromatin: what makes it unique?. Current Opinion in Genetics and Development, 2005, 15, 177-184.	3.3	151
210	Epigenetic inheritance in Arabidopsis: selective silence. Current Opinion in Genetics and Development, 2005, 15, 557-562.	3.3	44
211	ASSEMBLY OF VARIANT HISTONES INTO CHROMATIN. Annual Review of Cell and Developmental Biology, 2005, 21, 133-153.	9.4	248
212	Chromatin and siRNA pathways cooperate to maintain DNA methylation of small transposable elements in Arabidopsis. Genome Biology, 2005, 6, R90.	9.6	107
213	Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1525-1530.	7.1	468
214	Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Research, 2004, 32, 2632-2641.	14.5	225
215	Adaptive Evolution of the Histone Fold Domain in Centromeric Histones. Molecular Biology and Evolution, 2004, 21, 1712-1718.	8.9	89
216	Maize Centromeres: Organization and Functional Adaptation in the Genetic Background of Oat. Plant Cell, 2004, 16, 571-581.	6.6	241

#	Article	IF	CITATIONS
217	Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. Plant Journal, 2004, 37, 778-786.	5.7	428
218	Sequencing of a rice centromere uncovers active genes. Nature Genetics, 2004, 36, 138-145.	21.4	489
219	Histone variants, nucleosome assembly and epigenetic inheritance. Trends in Genetics, 2004, 20, 320-326.	6.7	265
220	Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biology, 2004, 4, 12.	3.6	342
221	Adaptive evolution of centromere proteins in plants and animals. Journal of Biology, 2004, 3, 18.	2.7	200
222	Silencing of transposons in plant genomes: kick them when they're down. Genome Biology, 2004, 5, 249.	9.6	46
223	Visualizing Gene Expression. Cell, 2004, 116, 633-634.	28.9	5
224	TILLING. Traditional Mutagenesis Meets Functional Genomics. Plant Physiology, 2004, 135, 630-636.	4.8	331
225	Epigenetics, Histone H3 Variants, and the Inheritance of Chromatin States. Cold Spring Harbor Symposia on Quantitative Biology, 2004, 69, 235-244.	1.1	52
226	Maintenance of chromatin states: an open-and-shut case. Current Opinion in Cell Biology, 2003, 15, 266-274.	5.4	129
227	Phylogenomics of the nucleosome. Nature Structural and Molecular Biology, 2003, 10, 882-891.	8.2	497
228	Quantitative epigenetics. Nature Genetics, 2003, 33, 6-8.	21.4	60
229	CODEHOP (COnsensus-DEgenerate Hybrid Oligonucleotide Primer) PCR primer design. Nucleic Acids Research, 2003, 31, 3763-3766.	14.5	359
230	SINGLE-NUCLEOTIDEMUTATIONS FORPLANTFUNCTIONALGENOMICS. Annual Review of Plant Biology, 2003, 54, 375-401.	18.7	238
231	SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Research, 2003, 31, 3812-3814.	14.5	5,120
232	Using the Blocks Database to Recognize Functional Domains. Current Protocols in Bioinformatics, 2003, 00, Unit 2.2.	25.8	5
233	High-Throughput TILLING for Functional Genomics. , 2003, 236, 205-220.		94
234	Large-Scale Discovery of Induced Point Mutations With High-Throughput TILLING. Genome Research, 2003, 13, 524-530.	5.5	505

#	Article	IF	CITATIONS
235	Distinct HP1 and Su(var)3-9 complexes bind to sets of developmentally coexpressed genes depending on chromosomal location. Genes and Development, 2003, 17, 2825-2838.	5.9	153
236	Epigenomic profiling using microarrays. BioTechniques, 2003, 35, 346-357.	1.8	57
237	Chromatin Immunoprecipitation Reveals That the 180-bp Satellite Repeat Is the Key Functional DNA Element of <i>Arabidopsis thaliana</i> Centromeres. Genetics, 2003, 163, 1221-1225.	2.9	254
238	Spectrum of Chemically Induced Mutations From a Large-Scale Reverse-Genetic Screen in Arabidopsis. Genetics, 2003, 164, 731-740.	2.9	512
239	Recurrent evolution of DNA-binding motifs in the Drosophila centromeric histone. Proceedings of the United States of America, 2002, 99, 1449-1454.	7.1	112
240	Centromeric Localization and Adaptive Evolution of an Arabidopsis Histone H3 Variant. Plant Cell, 2002, 14, 1053-1066.	6.6	372
241	Centromere Targeting Element within the Histone Fold Domain of Cid. Molecular and Cellular Biology, 2002, 22, 7553-7561.	2.3	121
242	Accounting for Human Polymorphisms Predicted to Affect Protein Function. Genome Research, 2002, 12, 436-446.	5.5	630
243	PHAGE DISPLAY: Affinity Selection from Biological Libraries. Science, 2002, 298, 621-622.	12.6	63
244	Epigenetic Consequences of Nucleosome Dynamics. Cell, 2002, 111, 281-284.	28.9	111
245	Histone H3 variants specify modes of chromatin assembly. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16477-16484.	7.1	288
246	The Histone Variant H3.3 Marks Active Chromatin by Replication-Independent Nucleosome Assembly. Molecular Cell, 2002, 9, 1191-1200.	9.7	1,023
247	Conflict begets complexity: the evolution of centromeres. Current Opinion in Genetics and Development, 2002, 12, 711-718.	3.3	178
248	Near the edge of a chromosome's â€~black hole'. Trends in Genetics, 2002, 18, 165-167.	6.7	37
249	Genome-Wide Profiling of DNA Methylation Reveals Transposon Targets of CHROMOMETHYLASE3. Current Biology, 2002, 12, 65-68.	3.9	166
250	Centromeres: Selfish drivers. Nature, 2002, 417, 227-227.	27.8	119
251	Speciation and Centromere Evolution. Science, 2001, 294, 2478-2480.	12.6	8
252	The Centromere Paradox: Stable Inheritance with Rapidly Evolving DNA. Science, 2001, 293, 1098-1102.	12.6	1,138

#	Article	IF	CITATIONS
253	Modulation of a Transcription Factor Counteracts Heterochromatic Gene Silencing in Drosophila. Cell, 2001, 104, 839-847.	28.9	146
254	Requirement of CHROMOMETHYLASE3 for Maintenance of CpXpG Methylation. Science, 2001, 292, 2077-2080.	12.6	820
255	Chromatin profiling using targeted DNA adenine methyltransferase. Nature Genetics, 2001, 27, 304-308.	21.4	303
256	High-Throughput Screening for Induced Point Mutations. Plant Physiology, 2001, 126, 480-484.	4.8	478
257	The Hinge and Chromo Shadow Domain Impart Distinct Targeting of HP1-Like Proteins. Molecular and Cellular Biology, 2001, 21, 2555-2569.	2.3	151
258	Predicting Deleterious Amino Acid Substitutions. Genome Research, 2001, 11, 863-874.	5.5	2,186
259	Centromeres Are Specialized Replication Domains in Heterochromatin. Journal of Cell Biology, 2001, 153, 101-110.	5.2	137
260	Adaptive Evolution of Cid, a Centromere-Specific Histone in Drosophila. Genetics, 2001, 157, 1293-1298.	2.9	274
261	Predicting In Vivo Protein-Peptide Interactions with Random Phage Display. Combinatorial Chemistry and High Throughput Screening, 2001, 4, 585-591.	1.1	7
262	Heterochromatic deposition of centromeric histone H3-like proteins. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 716-721.	7.1	285
263	Blocks-based methods for detecting protein homology. Electrophoresis, 2000, 21, 1700-1706.	2.4	64
264	Identification of in vivo DNA targets of chromatin proteins using tethered Dam methyltransferase. Nature Biotechnology, 2000, 18, 424-428.	17.5	544
265	Targeted screening for induced mutations. Nature Biotechnology, 2000, 18, 455-457.	17.5	689
266	Heterochromatin function in complex genomes. Biochimica Et Biophysica Acta: Reviews on Cancer, 2000, 1470, O1-O8.	7.4	82
267	The HP1 chromo shadow domain binds a consensus peptide pentamer. Current Biology, 2000, 10, 27-30.	3.9	231
268	Dual recognition–incision enzymes might be involved in mismatch repair and meiosis. Trends in Biochemical Sciences, 2000, 25, 414-418.	7.5	52
269	Reaching for new heitz. Genetica, 2000, 109, 7-8.	1.1	4
270	Comparative Genomics of the Eukaryotes. Science, 2000, 287, 2204-2215.	12.6	1,573

#	Article	IF	CITATIONS
271	Poised for Contagion: Evolutionary Origins of the Infectious Abilities of Invertebrate Retroviruses. Genome Research, 2000, 10, 1307-1318.	5.5	303
272	Drosophila Genomic Sequence Annotation Using the BLOCKS+ Database. Genome Research, 2000, 10, 543-546.	5.5	6
273	Increased coverage of protein families with the Blocks Database servers. Nucleic Acids Research, 2000, 28, 228-230.	14.5	281
274	Bugs on Drugs Go GAGAA. Cell, 2000, 103, 695-698.	28.9	20
275	Amino acid substitution matrices. Advances in Protein Chemistry, 2000, 54, 73-97.	4.4	126
276	Targeting Induced LocalLesions IN Genomes (TILLING) for Plant Functional Genomics. Plant Physiology, 2000, 123, 439-442.	4.8	817
277	A Reexamination of Spreading of Position-Effect Variegation in the white-roughest Region of Drosophila melanogaster. Genetics, 2000, 154, 259-272.	2.9	65
278	Blocks+: a non-redundant database of protein alignment blocks derived from multiple compilations. Bioinformatics, 1999, 15, 471-479.	4.1	269
279	New features of the Blocks Database servers. Nucleic Acids Research, 1999, 27, 226-228.	14.5	94
280	A histone-H3-like protein in C. elegans. Nature, 1999, 401, 547-548.	27.8	233
281	The House & Garden guide to chromatin remodelling. Nature Genetics, 1999, 22, 6-7.	21.4	17
282	A Distal Heterochromatic Block Displays Centromeric Activity When Detached from a Natural Centromere. Molecular Cell, 1999, 4, 995-1004.	9.7	51
283	Pairing-Dependent Mislocalization of a Drosophila brown Gene Reporter to a Heterochromatic Environment. Genetics, 1999, 152, 595-604.	2.9	36
284	Exploring protein homology with the Blocks server. Trends in Genetics, 1998, 14, 162-163.	6.7	10
285	Something from nothing: the evolution and utility of satellite repeats. Trends in Genetics, 1998, 14, 200-204.	6.7	267
286	Conspiracy of silence among repeated transgenes. BioEssays, 1998, 20, 532-535.	2.5	216
287	Repetitive arrays containing a housekeeping gene have altered polytene chromosome morphology in Drosophila. Chromosoma, 1998, 107, 96-104.	2.2	17
288	Heterochromatin protein 1 binds transgene arrays. Chromosoma, 1998, 107, 286-292.	2.2	92

#	Article	IF	CITATIONS
289	Trans-Sensing Effects: The Ups and Downs of Being Together. Cell, 1998, 93, 329-332.	28.9	88
290	Superior performance in protein homology detection with the Blocks Database servers. Nucleic Acids Research, 1998, 26, 309-312.	14.5	56
291	Changes in Chromosomal Localization of Heterochromatin-binding Proteins during the Cell Cycle in <i>Drosophila </i> . Journal of Cell Biology, 1998, 140, 1297-1306.	5.2	140
292	Large-scale Chromosomal Movements During Interphase Progression in <i>Drosophila </i> . Journal of Cell Biology, 1998, 143, 13-22.	5.2	131
293	Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucleic Acids Research, 1998, 26, 1628-1635.	14.5	659
294	Conspiracy of silence among repeated transgenes. BioEssays, 1998, 20, 532-535.	2.5	1
295	A DNA Methyltransferase Homolog With a Chromodomain Exists in Multiple Polymorphic Forms in Arabidopsis. Genetics, 1998, 149, 307-318.	2.9	192
296	Comparative Analysis of Position–Effect Variegation Mutations in Drosophila melanogaster Delineates the Targets of Modifiers. Genetics, 1998, 148, 733-741.	2.9	29
297	Recent enhancements to the Blocks Database servers. Nucleic Acids Research, 1997, 25, 222-225.	14.5	34
298	Gene Families: The Taxonomy of Protein Paralogs and Chimeras. Science, 1997, 278, 609-614.	12.6	362
299	Nuclear organization and gene expression: homologous pairing and long-range interactions. Current Opinion in Cell Biology, 1997, 9, 388-395.	5.4	99
300	You read it here first. Nature, 1997, 387, 843-843.	27.8	3
301	Exploring and explaining epigenetic effects. Trends in Genetics, 1997, 13, 293-295.	6.7	275
302	A helix-turn-helix DNA-binding motif predicted for transposases of DNA transposons. Molecular Genetics and Genomics, 1997, 254, 689-695.	2.4	68
303	Embedding strategies for effective use of information from multiple sequence alignments. Protein Science, 1997, 6, 698-705.	7.6	65
304	Heterochromatic <i>trans</i> -Inactivation of Drosophila <i>white</i> Transgenes. Genetics, 1997, 147, 671-677.	2.9	31
305	Transgene Repeat Arrays Interact With Distant Heterochromatin and Cause Silencing in <i>cis</i> and <i>trans</i> . Genetics, 1997, 147, 1181-1190.	2.9	158
306	GENOME MAPS 8: Building Gene Families. Science, 1997, 278, 615-615.	12.6	5

#	Article	IF	CITATIONS
307	Introduction of a DNA methyltransferase into Drosophila to probe chromatin structure in vivo. Chromosoma, 1996, 104, 332-340.	2.2	55
308	Connecting protein family resourcesusing the proWeb network. Trends in Biochemical Sciences, 1996, 21, 444-445.	7.5	11
309	Dosageâ€dependent modification of positionâ€effect variegation in <i>Drosophla</i> . BioEssays, 1996, 18, 401-409.	2.5	121
310	Genetic modification of heterochromatic association and nuclear organization in Drosophila. Nature, 1996, 381, 529-531.	27.8	324
311	The Blocks databasea system for protein classification. Nucleic Acids Research, 1996, 24, 197-200.	14.5	112
312	Using substitution probabilities to improve position-specific scoring matrices. Bioinformatics, 1996, 12, 135-143.	4.1	94
313	[6] Blocks database and its applications. Methods in Enzymology, 1996, 266, 88-105.	1.0	101
314	Copy Number and Orientation Determine the Susceptibility of a Gene to Silencing by Nearby Heterochromatin in Drosophila. Genetics, 1996, 142, 447-458.	2.9	96
315	Introduction of a DNA methyltransferase into Drosophila to probe chromatin structure in vivo. Chromosoma, 1996, 104, 332-340.	2.2	4
316	Comparative methods for identifying functional domains in protein sequences. Biotechnology Annual Review, 1995, 1, 129-147.	2.1	5
317	Detecting dinosaur DNA. Science, 1995, 268, 1191-1192.	12.6	80
318	Automated construction and graphical presentation of protein blocks from unaligned sequences. Gene, 1995, 163, GC17-GC26.	2.2	289
319	Protein Family Classification Based on Searching a Database of Blocks. Genomics, 1994, 19, 97-107.	2.9	370
320	Position-based sequence weights. Journal of Molecular Biology, 1994, 243, 574-578.	4.2	392
321	Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell, 1994, 77, 993-1002.	28.9	557
322	Performance evaluation of amino acid substitution matrices. Proteins: Structure, Function and Bioinformatics, 1993, 17, 49-61.	2.6	395
323	Nested genes take flight. Current Biology, 1993, 3, 372-374.	3.9	11
324	Transcriptional activator components and poxvirus DNA-dependent ATPases comprise a single family. Trends in Biochemical Sciences, 1993, 18, 291-292.	7.5	48

#	Article	IF	CITATIONS
325	Sequence analysis by electronic mail server. Trends in Biochemical Sciences, 1993, 18, 267-268.	7.5	32
326	Nucleotide sequence and initial functional characterization of the clcR gene encoding a LysR family activator of the clcABD chlorocatechol operon in Pseudomonas putida. Journal of Bacteriology, 1993, 175, 417-427.	2.2	90
327	Characterization of Sequences Responsible for trans-Inactivation of the Drosophila brown Gene. Cold Spring Harbor Symposia on Quantitative Biology, 1993, 58, 577-584.	1.1	12
328	Amino acid substitution matrices from protein blocks Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 10915-10919.	7.1	5,230
329	Position effect and related phenomena. Current Opinion in Genetics and Development, 1992, 2, 907-912.	3.3	96
330	Unusual organizational features of the Drosophila Gart locus are not conserved within diptera. Journal of Molecular Evolution, 1992, 35, 51-59.	1.8	9
331	Fact and fiction in alignment. Nature, 1992, 358, 271-271.	27.8	3
332	Functional Organization of the Nucleus: A Laboratory Guide (Methods in Cell Biology Vol. 35). Trends in Genetics, 1992, 8, 259.	6.7	0
333	Trans-sensing effects from Drosophila to humans. Cell, 1991, 65, 201-203.	28.9	147
334	rbcR [correction of rcbR], a gene coding for a member of the LysR family of transcriptional regulators, is located upstream of the expressed set of ribulose 1,5-bisphosphate carboxylase/oxygenase genes in the photosynthetic bacterium Chromatium vinosum. Journal of Bacteriology, 1991, 173, 5224-5229.	2.2	97
335	So what's new?. Nature, 1991, 350, 9-9.	27.8	6
336	Automated assembly of protein blocks for database searching. Nucleic Acids Research, 1991, 19, 6565-6572.	14.5	449
337	A pairing-sensitive element that mediates trans-inactivation is associated with the Drosophila brown gene Genes and Development, 1991, 5, 331-340.	5.9	92
338	Ordered deletions for DNA sequencing andin vitromutagenesis by polymerase extension and exonuclease gapping of circular templates. Nucleic Acids Research, 1990, 18, 2961-2961.	14.5	37
339	Mediation of meiotic and early mitotic chromosome segregation in Drosophila by a protein related to kinesin. Nature, 1990, 345, 81-83.	27.8	256
340	Position-effect variegation after 60 years. Trends in Genetics, 1990, 6, 422-426.	6.7	335
341	The human mRNA that provides the N-terminus of chimeric G6PD encodes GMP reductase. Cell, 1989, 58, 1021-1022.	28.9	12
342	Trans-inactivation of the Drosophila brown gene: evidence for transcriptional repression and somatic pairing dependence. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 6704-6708.	7.1	112

#	Article	IF	CITATIONS
343	Related transposons in C.elegans and D.melanogaster. Nucleic Acids Research, 1988, 16, 6234-6234.	14.5	32
344	A large family of bacterial activator proteins Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 6602-6606.	7.1	524
345	[12] Unidirectional digestion with exonuclease III in DNA sequence analysis. Methods in Enzymology, 1987, 155, 156-165.	1.0	957
346	Multifunctional polypeptides for purinede novo synthesis. BioEssays, 1987, 6, 8-13.	2.5	32
347	Conserved Arrangement of Nested Genes at the Drosophila <i> Gart</i> Locus. Genetics, 1987, 117, 711-725.	2.9	195
348	Gene within a gene: Nested Drosophila genes encode unrelated proteins on opposite DNA strands. Cell, 1986, 44, 33-42.	28.9	275
349	The Saccharomyces cerevisiae ADE5,7 protein is homologous to overlapping Drosophila melanogaster Gart polypeptides. Journal of Molecular Biology, 1986, 190, 519-528.	4.2	55
350	Two Drosophila melanogaster mutations block successive steps of de novo purine synthesis Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 3919-3923.	7.1	20
351	Multiple purine pathway enzyme activities are encoded at a single genetic locus in Drosophila Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 720-724.	7.1	71
352	Use of oligonucleotides to generate large deletions. Nucleic Acids Research, 1986, 14, 5115-5115.	14.5	41
353	Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene, 1984, 28, 351-359.	2.2	4,616
354	A Drosophila metabolic gene transcript is alternatively processed. Cell, 1983, 34, 405-414.	28.9	73
355	Transcription terminates in yeast distal to a control sequence. Cell, 1983, 33, 607-614.	28.9	198
356	Sequence of aDrosophilaDNA segment that functions inSaccharomyces Cerevisiaeand its regulation by a yeast promoter. Nucleic Acids Research, 1983, 11, 789-800.	14.5	28
357	Cloning exons for mapping of transcription: characterization of theDrosophila melanogasteralcohol dehydrogenise gene. Nucleic Acids Research, 1983, 11, 4735-4752.	14.5	42
358	Position-effect variegation and chromosome structure of a heat shock puff in Drosophila. Chromosoma, 1981, 83, 381-393.	2.2	86
359	Isolation of a gene from Drosophila by complementation in yeast. Nature, 1981, 289, 33-37.	27.8	104
360	POSITION EFFECTS AND VARIEGATION ENHANCERS IN AN AUTOSOMAL REGION OF <i>DROSOPHILA MELANOGASTER</i> . Genetics, 1979, 93, 105-115.	2.9	61

#	Article	IF	CITATIONS
361	Transcription at two heat shock loci in Drosophila. Cell, 1977, 12, 441-451.	28.9	73
362	Localization of RNA from heat-induced polysomes at puff sites in Drosophila melanogaster Proceedings of the National Academy of Sciences of the United States of America, 1975, 72, 1117-1121.	7.1	315
363	Orientation of repeating units in Xenopus chromosomal ribosomal DNA: A test of a stochastic model for maintaining intraspecies homogeneity. Journal of Molecular Biology, 1974, 85, 445-450.	4.2	4