Sian Ellard

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6042252/sian-ellard-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

30,621 88 160 490 h-index g-index citations papers 6.66 6.9 518 34,949 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
490	Evaluation of Evidence for Pathogenicity Demonstrates that BLK, KLF11 and PAX4 Should not be Included in Diagnostic Testing for MODY <i>Diabetes</i> , 2022 ,	0.9	2
489	SavvyCNV: Genome-wide CNV calling from off-target[reads <i>PLoS Computational Biology</i> , 2022 , 18, e10	09940	1
488	Congenital beta cell defects are not associated with markers of islet autoimmunity, even in the context of high genetic risk for type 1 diabetes <i>Diabetologia</i> , 2022 , 1	10.3	О
487	Refinements and considerations for trio whole-genome sequence analysis when investigating Mendelian diseases presenting in early childhood <i>Human Genetics and Genomics Advances</i> , 2022 , 3, 100)f183	O
486	Systematic genetic testing for recessively inherited monogenic diabetes: a cross-sectional study in paediatric diabetes clinics. <i>Diabetologia</i> , 2021 , 1	10.3	1
485	100,000 Genomes Pilot on Rare-Disease Diagnosis in Health Care - Preliminary Report. <i>New England Journal of Medicine</i> , 2021 , 385, 1868-1880	59.2	34
484	Syndromic Monogenic Diabetes Genes Should be Tested in Patients With a Clinical Suspicion of MODY. <i>Diabetes</i> , 2021 ,	0.9	2
483	Founder mutation in the PMM2 promotor causes hyperinsulinemic hypoglycaemia/polycystic kidney disease (HIPKD). <i>Molecular Genetics & Enomic Medicine</i> , 2021 , e1674	2.3	O
482	Functional interpretation of ATAD3A variants in neuro-mitochondrial phenotypes. <i>Genome Medicine</i> , 2021 , 13, 55	14.4	5
481	Neonatal diabetes mutations disrupt a chromatin pioneering function that activates the human insulin gene. <i>Cell Reports</i> , 2021 , 35, 108981	10.6	4
480	Mutations in HID1 Cause Syndromic Infantile Encephalopathy and Hypopituitarism. <i>Annals of Neurology</i> , 2021 , 90, 143-158	9.4	1
479	Combining evidence for and against pathogenicity for variants in cancer susceptibility genes: CanVIG-UK consensus recommendations. <i>Journal of Medical Genetics</i> , 2021 , 58, 297-304	5.8	7
478	Missense substitutions at a conserved 14-3-3 binding site in HDAC4 cause a novel intellectual disability syndrome. <i>Human Genetics and Genomics Advances</i> , 2021 , 2, 100015	0.8	2
477	Long-term Follow-up of Glycemic and Neurological Outcomes in an International Series of Patients With Sulfonylurea-Treated Permanent Neonatal Diabetes. <i>Diabetes Care</i> , 2021 , 44, 35-42	14.6	7
476	Diagnostic RET genetic testing in 1,058 index patients: A UK centre perspective. <i>Clinical Endocrinology</i> , 2021 , 95, 295-302	3.4	O
475	Genotype and Phenotype Heterogeneity in Neonatal Diabetes: A Single Centre Experience in Turkey. <i>JCRPE Journal of Clinical Research in Pediatric Endocrinology</i> , 2021 , 13, 80-87	1.9	1
474	A hemizygous mutation in the FOXP3 gene (IPEX syndrome) resulting in recurrent X-linked fetal hydrops: a case report. <i>BMC Medical Genomics</i> , 2021 , 14, 58	3.7	1

(2020-2021)

473	Bi-allelic variants in the ER quality-control mannosidase gene EDEM3 cause a congenital disorder of glycosylation. <i>American Journal of Human Genetics</i> , 2021 , 108, 1342-1349	11	1
472	Molecular Genetics, Clinical Characteristics, and Treatment Outcomes of K-Channel Neonatal Diabetes Mellitus in Vietnam National Children M Hospital. <i>Frontiers in Endocrinology</i> , 2021 , 12, 727083	5.7	3
471	Study of Acute Liver Failure in Children Using Next Generation Sequencing Technology. <i>Journal of Pediatrics</i> , 2021 , 236, 124-130	3.6	1
470	Unsupervised Clustering of Missense Variants in HNF1A Using Multidimensional Functional Data Aids Clinical Interpretation. <i>American Journal of Human Genetics</i> , 2020 , 107, 670-682	11	9
469	Cancer Variant Interpretation Group UK (CanVIG-UK): an exemplar national subspecialty multidisciplinary network. <i>Journal of Medical Genetics</i> , 2020 , 57, 829-834	5.8	11
468	Noninvasive Fetal Genotyping by Droplet Digital PCR to Identify Maternally Inherited Monogenic Diabetes Variants. <i>Clinical Chemistry</i> , 2020 , 66, 958-965	5.5	13
467	Using referral rates for genetic testing to determine the incidence of a rare disease: The minimal incidence of congenital hyperinsulinism in the UK is 1 in 28,389. <i>PLoS ONE</i> , 2020 , 15, e0228417	3.7	11
466	Update of variants identified in the pancreatic Etell K channel genes KCNJ11 and ABCC8 in individuals with congenital hyperinsulinism and diabetes. <i>Human Mutation</i> , 2020 , 41, 884-905	4.7	37
465	Blood RNA analysis can increase clinical diagnostic rate and resolve variants of uncertain significance. <i>Genetics in Medicine</i> , 2020 , 22, 1005-1014	8.1	35
464	Absence of Islet Autoantibodies and Modestly Raised Glucose Values at Diabetes Diagnosis Should Lead to Testing for MODY: Lessons From a 5-Year Pediatric Swedish National Cohort Study. <i>Diabetes Care</i> , 2020 , 43, 82-89	14.6	35
463	A restricted spectrum of missense KMT2D variants cause a multiple malformations disorder distinct from Kabuki syndrome. <i>Genetics in Medicine</i> , 2020 , 22, 867-877	8.1	17
462	Recurrent De Novo NAHR Reciprocal Duplications in the ATAD3 Gene Cluster Cause a Neurogenetic Trait with Perturbed Cholesterol and Mitochondrial Metabolism. <i>American Journal of Human Genetics</i> , 2020 , 106, 272-279	11	20
461	Prediction algorithms: pitfalls in interpreting genetic variants of autosomal dominant monogenic diabetes. <i>Journal of Clinical Investigation</i> , 2020 , 130, 14-16	15.9	13
460	YIPF5 mutations cause neonatal diabetes and microcephaly through endoplasmic reticulum stress. <i>Journal of Clinical Investigation</i> , 2020 , 130, 6338-6353	15.9	21
459	Significant Benefits of AIP Testing and Clinical Screening in Familial Isolated and Young-onset Pituitary Tumors. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2020 , 105,	5.6	21
458	Phenotype of a transient neonatal diabetes point mutation (SUR1-R1183W) in mice. <i>Wellcome Open Research</i> , 2020 , 5, 15	4.8	
457	Homozygous Hypomorphic Alleles Are a Novel Cause of Young-Onset Diabetes and Result in Sulfonylurea-Sensitive Diabetes. <i>Diabetes Care</i> , 2020 , 43, 909-912	14.6	7
456	Recurrent TTN metatranscript-only c.39974-11T>G splice variant associated with autosomal recessive arthrogryposis multiplex congenita and myopathy. <i>Human Mutation</i> , 2020 , 41, 403-411	4.7	10

455	A novel autosomal recessive DEAF1 nonsense variant: expanding the clinical phenotype. <i>Clinical Dysmorphology</i> , 2020 , 29, 114-117	0.9	1
454	De Novo Mutations in Affecting eIF2 Signaling Cause Neonatal/Early-Onset Diabetes and Transient Hepatic Dysfunction. <i>Diabetes</i> , 2020 , 69, 477-483	0.9	17
453	Type 1 diabetes can present before the age of 6[months and is characterised by autoimmunity and rapid loss of beta cells. <i>Diabetologia</i> , 2020 , 63, 2605-2615	10.3	9
452	Response to Comment on Misra et al. Homozygous Hypomorphic Alleles Are a Novel Cause of Young-Onset Diabetes and Result in Sulfonylurea-Sensitive Diabetes. Diabetes Care 2020;43:909-912. <i>Diabetes Care</i> , 2020 , 43, e155-e156	14.6	
451	Phenotype of a transient neonatal diabetes point mutation (SUR1-R1183W) in mice. <i>Wellcome Open Research</i> , 2020 , 5, 15	4.8	O
450	Compound heterozygous Pkd1l1 variants in a family with two fetuses affected by heterotaxy and complex Chd. <i>European Journal of Medical Genetics</i> , 2020 , 63, 103657	2.6	4
449	Using referral rates for genetic testing to determine the incidence of a rare disease: The minimal incidence of congenital hyperinsulinism in the UK is 1 in 28,389 2020 , 15, e0228417		
448	Using referral rates for genetic testing to determine the incidence of a rare disease: The minimal incidence of congenital hyperinsulinism in the UK is 1 in 28,389 2020 , 15, e0228417		
447	Using referral rates for genetic testing to determine the incidence of a rare disease: The minimal incidence of congenital hyperinsulinism in the UK is 1 in 28,389 2020 , 15, e0228417		
446	Using referral rates for genetic testing to determine the incidence of a rare disease: The minimal incidence of congenital hyperinsulinism in the UK is 1 in 28,389 2020 , 15, e0228417		
445	A hypomorphic allele of SLC35D1 results in Schneckenbecken-like dysplasia. <i>Human Molecular Genetics</i> , 2019 , 28, 3543-3551	5.6	4
444	HNF1B Mutations Are Associated With a Gitelman-like Tubulopathy That Develops During Childhood. <i>Kidney International Reports</i> , 2019 , 4, 1304-1311	4.1	22
443	A Specific CNOT1 Mutation Results in a Novel Syndrome of Pancreatic Agenesis and Holoprosencephaly through Impaired Pancreatic and Neurological Development. <i>American Journal of Human Genetics</i> , 2019 , 104, 985-989	11	28
442	Trisomy 21 Is a Cause of Permanent Neonatal Diabetes That Is Autoimmune but Not HLA Associated. <i>Diabetes</i> , 2019 , 68, 1528-1535	0.9	15
441	Congenital hyperinsulinism as the presenting feature of Kabuki syndrome: clinical and molecular characterization of 9 affected individuals. <i>Genetics in Medicine</i> , 2019 , 21, 233-242	8.1	23
440	The role of molecular genetics in the clinical management of sporadic medullary thyroid carcinoma: A systematic review. <i>Clinical Endocrinology</i> , 2019 , 91, 697-707	3.4	16
439	Genomic variant sharing: a position statement. Wellcome Open Research, 2019, 4, 22	4.8	16
438	Partial diazoxide responsiveness in a neonate with hyperinsulinism due to homozygous ABCC8 mutation. <i>Endocrinology, Diabetes and Metabolism Case Reports</i> , 2019 , 2019,	1.4	2

(2018-2019)

437	Novel Homozygous p.L171F Mutation. <i>JCRPE Journal of Clinical Research in Pediatric Endocrinology</i> , 2019 , 11, 82-87	1.9	10
436	Refinement of the critical genomic region for hypoglycaemia in the Chromosome 9p deletion syndrome. <i>Wellcome Open Research</i> , 2019 , 4, 149	4.8	1
435	Refinement of the critical genomic region for congenital hyperinsulinismlin the Chromosome 9p deletion syndrome. <i>Wellcome Open Research</i> , 2019 , 4, 149	4.8	1
434	Misannotation of multiple-nucleotide variants risks misdiagnosis. Wellcome Open Research, 2019, 4, 145	4.8	О
433	CAKUT and Autonomic Dysfunction Caused by Acetylcholine Receptor Mutations. <i>American Journal of Human Genetics</i> , 2019 , 105, 1286-1293	11	8
432	Using Structural Analysis to Assess the Impact of Missense Variants in MEN1. <i>Journal of the Endocrine Society</i> , 2019 , 3, 2258-2275	0.4	6
431	NAD(P)HX dehydratase (NAXD) deficiency: a novel neurodegenerative disorder exacerbated by febrile illnesses. <i>Brain</i> , 2019 , 142, 50-58	11.2	31
430	An Amish founder variant consolidates disruption of CEP55 as a cause of hydranencephaly and renal dysplasia. <i>European Journal of Human Genetics</i> , 2019 , 27, 657-662	5.3	17
429	Homozygosity mapping provides supporting evidence of pathogenicity in recessive Mendelian disease. <i>Genetics in Medicine</i> , 2019 , 21, 982-986	8.1	15
428	Focal Congenital Hyperinsulinism as a Cause for Sudden Infant Death. <i>Pediatric and Developmental Pathology</i> , 2019 , 22, 65-69	2.2	4
427	Risk category system to identify pituitary adenoma patients with mutations. <i>Journal of Medical Genetics</i> , 2018 , 55, 254-260	5.8	22
426	Congenital Titinopathy: Comprehensive characterization and pathogenic insights. <i>Annals of Neurology</i> , 2018 , 83, 1105-1124	9.4	59
425	Pharmacogenomics in diabetes: outcomes of thiamine therapy in TRMA syndrome. <i>Diabetologia</i> , 2018 , 61, 1027-1036	10.3	17
424	missense mutation causes familial insulinomatosis and diabetes mellitus. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 1027-1032	11.5	45
423	A type 1 diabetes genetic risk score can discriminate monogenic autoimmunity with diabetes from early-onset clustering of polygenic autoimmunity with diabetes. <i>Diabetologia</i> , 2018 , 61, 862-869	10.3	20
422	Comment on Dubois-Laforgue et al. Diabetes, Associated Clinical Spectrum, Long-term Prognosis, and Genotype/Phenotype Correlations in 201 Adult Patients With Hepatocyte Nuclear Factor 1B () Molecular Defects. Diabetes Care 2017;40:1436-1443. <i>Diabetes Care</i> , 2018 , 41, e7	14.6	3
421	WNT Signaling Perturbations Underlie the Genetic Heterogeneity of Robinow Syndrome. <i>American Journal of Human Genetics</i> , 2018 , 102, 27-43	11	61
420	Genetic mutations associated with neonatal diabetes mellitus in Omani patients. <i>Journal of Pediatric Endocrinology and Metabolism</i> , 2018 , 31, 195-204	1.6	8

419	Emergence of insulin resistance following empirical glibenclamide therapy: a case report of neonatal diabetes with a recessive INS gene mutation. <i>Journal of Pediatric Endocrinology and Metabolism</i> , 2018 , 31, 345-348	1.6	7
418	Prevalence of diabetes in Australia: insights from the Fremantle Diabetes Study Phase II. <i>Internal Medicine Journal</i> , 2018 , 48, 803-809	1.6	19
417	Permanent neonatal diabetes mellitus and neurological abnormalities due to a novel homozygous missense mutation in NEUROD1. <i>Pediatric Diabetes</i> , 2018 , 19, 898-904	3.6	14
416	Diagnosis of lethal or prenatal-onset autosomal recessive disorders by parental exome sequencing. <i>Prenatal Diagnosis</i> , 2018 , 38, 33-43	3.2	47
415	Diazoxide toxicity in a child with persistent hyperinsulinemic hypoglycemia of infancy: mixed hyperglycemic hyperosmolar coma and ketoacidosis. <i>Journal of Pediatric Endocrinology and Metabolism</i> , 2018 , 31, 943-945	1.6	6
414	TRPV6 compound heterozygous variants result in impaired placental calcium transport and severe undermineralization and dysplasia of the fetal skeleton. <i>American Journal of Medical Genetics, Part A</i> , 2018 , 176, 1950-1955	2.5	24
413	Comprehensive screening shows that mutations in the known syndromic genes are rare in infants presenting with hyperinsulinaemic hypoglycaemia. <i>Clinical Endocrinology</i> , 2018 , 89, 621-627	3.4	4
412	Exocrine pancreatic dysfunction is common in hepatocyte nuclear factor 1Eassociated renal disease and can be symptomatic. <i>CKJ: Clinical Kidney Journal</i> , 2018 , 11, 453-458	4.5	5
411	Effectiveness and safety of long-term treatment with sulfonylureas in patients with neonatal diabetes due to KCNJ11 mutations: an international cohort study. <i>Lancet Diabetes and Endocrinology,the</i> , 2018 , 6, 637-646	18.1	77
410	The Common Variant I27L Is a Modifier of Age at Diabetes Diagnosis in Individuals With HNF1A-MODY. <i>Diabetes</i> , 2018 , 67, 1903-1907	0.9	7
409	Neonatal Diabetes: Two Cases with Isolated Pancreas Agenesis due to Homozygous PTF1A Enhancer Mutations and One with Developmental Delay, Epilepsy, and Neonatal Diabetes Syndrome due to KCNJ11 Mutation. <i>JCRPE Journal of Clinical Research in Pediatric Endocrinology</i> ,	1.9	12
408	2018, 10, 168-174 Sirolimus-Induced Hepatitis in Two Patients with Hyperinsulinemic Hypoglycemia. <i>JCRPE Journal of Clinical Research in Pediatric Endocrinology</i> , 2018, 10, 279-283	1.9	5
407	ICR142 Benchmarker: evaluating, optimising and benchmarking variant calling performance using the ICR142 NGS validation series. <i>Wellcome Open Research</i> , 2018 , 3, 108	4.8	
406	Monogenic Diabetes Not Caused By Mutations in Mody Genes: A Very Heterogenous Group of Diabetes. <i>Experimental and Clinical Endocrinology and Diabetes</i> , 2018 , 126, 612-618	2.3	5
405	Marked intrafamilial variability of exocrine and endocrine pancreatic phenotypes due to a splice site mutation in GATA6. <i>Biotechnology and Biotechnological Equipment</i> , 2018 , 32, 124-129	1.6	
404	A Novel KCNJ11 Mutation Associated with Transient Neonatal Diabetes. <i>JCRPE Journal of Clinical Research in Pediatric Endocrinology</i> , 2018 , 10, 175-178	1.9	6
403	p.Val804Met, the Most Frequent Pathogenic Mutation in RET, Confers a Very Low Lifetime Risk of Medullary Thyroid Cancer. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2018 , 103, 4275-4282	5.6	24
402	ICR142 Benchmarker: evaluating, optimising and benchmarking variant calling using the ICR142 NGS validation series. <i>Wellcome Open Research</i> , 2018 , 3, 108	4.8	

401	Clinical Diversity in Focal Congenital Hyperinsulinism in Infancy Correlates With Histological Heterogeneity of Islet Cell Lesions. <i>Frontiers in Endocrinology</i> , 2018 , 9, 619	5.7	9
400	Response to Letter to the Editor: "p.Val804Met, the Most Frequent Pathogenic Mutation in RET, Confers a Very Low Lifetime Risk of Medullary Thyroid Cancer". <i>Journal of Clinical Endocrinology and Metabolism</i> , 2018 , 103, 3518-3519	5.6	3
399	PLIN1 Haploinsufficiency Is Not Associated With Lipodystrophy. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2018 , 103, 3225-3230	5.6	14
398	ISPAD Clinical Practice Consensus Guidelines 2018: The diagnosis and management of monogenic diabetes in children and adolescents. <i>Pediatric Diabetes</i> , 2018 , 19 Suppl 27, 47-63	3.6	136
397	A UK nationwide prospective study of treatment change in MODY: genetic subtype and clinical characteristics predict optimal glycaemic control after discontinuing insulin and metformin. <i>Diabetologia</i> , 2018 , 61, 2520-2527	10.3	38
396	Dominant ER Stress-Inducing Mutations Underlie a Genetic Syndrome of Neonatal/Infancy-Onset Diabetes, Congenital Sensorineural Deafness, and Congenital Cataracts. <i>Diabetes</i> , 2017 , 66, 2044-2053	0.9	56
395	Recessively Inherited Mutations Cause Autoimmunity Presenting as Neonatal Diabetes. <i>Diabetes</i> , 2017 , 66, 2316-2322	0.9	39
394	A successful transition to sulfonylurea treatment in male infant with neonatal diabetes caused by the novel abcc8 gene mutation and three years follow-up. <i>Diabetes Research and Clinical Practice</i> , 2017 , 129, 59-61	7.4	5
393	Atypical Forms of Congenital Hyperinsulinism in Infancy Are Associated With Mosaic Patterns of Immature Islet Cells. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2017 , 102, 3261-3267	5.6	21
392	Clinical presentation and treatment response to diazoxide in two siblings with congenital hyperinsulinism as a result of a novel compound heterozygous ABCC8 missense mutation. <i>Journal of Pediatric Endocrinology and Metabolism</i> , 2017 , 30, 471-474	1.6	1
391	Polycystic Kidney Disease with Hyperinsulinemic Hypoglycemia Caused by a Promoter Mutation in Phosphomannomutase 2. <i>Journal of the American Society of Nephrology: JASN</i> , 2017 , 28, 2529-2539	12.7	73
390	Exome sequencing reveals a de novo POLD1 mutation causing phenotypic variability in mandibular hypoplasia, deafness, progeroid features, and lipodystrophy syndrome (MDPL). <i>Metabolism: Clinical and Experimental</i> , 2017 , 71, 213-225	12.7	31
389	Heterozygous RFX6 protein truncating variants are associated with MODY with reduced penetrance. <i>Nature Communications</i> , 2017 , 8, 888	17.4	57
388	The prevalence of monogenic diabetes in Australia: the Fremantle Diabetes Study Phase II. <i>Medical Journal of Australia</i> , 2017 , 207, 344-347	4	11
387	Fainting Fanconi syndrome clarified by proxy: a case report. <i>BMC Nephrology</i> , 2017 , 18, 230	2.7	8
386	MODY in Ukraine: genes, clinical phenotypes and treatment. <i>Journal of Pediatric Endocrinology and Metabolism</i> , 2017 , 30, 1095-1103	1.6	5
385	Analysis of large-scale sequencing cohorts does not support the role of variants in UCP2 as a cause of hyperinsulinaemic hypoglycaemia. <i>Human Mutation</i> , 2017 , 38, 1442-1444	4.7	15
384	Screening for neonatal diabetes at day 5 of life using dried blood spot glucose measurement. <i>Diabetologia</i> , 2017 , 60, 2168-2173	10.3	7

383	In-frame seven amino-acid duplication in arose over the last 3000 years, disrupts protein interaction and stability and is associated with gigantism. <i>European Journal of Endocrinology</i> , 2017 , 177, 257-266	6.5	11
382	Population-Based Assessment of a Biomarker-Based Screening Pathway to Aid Diagnosis of Monogenic Diabetes in Young-Onset Patients. <i>Diabetes Care</i> , 2017 , 40, 1017-1025	14.6	73
381	Clinical and Molecular Characterization of Children with Neonatal Diabetes Mellitus at a Tertiary Care Center in Northern India. <i>Indian Pediatrics</i> , 2017 , 54, 467-471	1.2	9
380	Case report: maternal mosaicism resulting in inheritance of a novel GATA6 mutation causing pancreatic agenesis and neonatal diabetes mellitus. <i>Diagnostic Pathology</i> , 2017 , 12, 1	3	20
379	Analysis of cell-free fetal DNA for non-invasive prenatal diagnosis in a family with neonatal diabetes. <i>Diabetic Medicine</i> , 2017 , 34, 582-585	3.5	24
378	Increased Population Risk of AIP-Related Acromegaly and Gigantism in Ireland. <i>Human Mutation</i> , 2017 , 38, 78-85	4.7	24
377	The Clinical Course of Patients with Preschool Manifestation of Type 1 Diabetes Is Independent of the HLA DR-DQ Genotype. <i>Genes</i> , 2017 , 8,	4.2	7
376	Pancreatic Agenesis due to Compound Heterozygosity for a Novel Enhancer and Truncating Mutation in the PTF1A Gene. <i>JCRPE Journal of Clinical Research in Pediatric Endocrinology</i> , 2017 , 9, 274-	277	16
375	An Nonsense Mutation Causing Neonatal Diabetes Through Altered Transcript Expression. <i>JCRPE Journal of Clinical Research in Pediatric Endocrinology</i> , 2017 , 9, 260-264	1.9	10
374	Prematurity and Genetic Testing for Neonatal Diabetes. <i>Pediatrics</i> , 2016 , 138,	7.4	19
373	Germline or somatic GPR101 duplication leads to X-linked acrogigantism: a clinico-pathological and genetic study. <i>Acta Neuropathologica Communications</i> , 2016 , 4, 56	7.3	77
372	Prospective functional classification of all possible missense variants in PPARG. <i>Nature Genetics</i> , 2016 , 48, 1570-1575	36.3	149
371	Hyperinsulinemic Hypoglycemia of Infancy due to Novel HADH Mutation in Two Siblings. <i>Indian Pediatrics</i> , 2016 , 53, 912-913	1.2	4
370	Conservatively treated Congenital Hyperinsulinism (CHI) due to K-ATP channel gene mutations: reducing severity over time. <i>Orphanet Journal of Rare Diseases</i> , 2016 , 11, 163	4.2	32
369	Coexistence of Mosaic Uniparental Isodisomy and a KCNJ11 Mutation Presenting as Diffuse Congenital Hyperinsulinism and Hemihypertrophy. <i>Hormone Research in Paediatrics</i> , 2016 , 85, 421-5	3.3	6
368	Genetic characteristics, clinical spectrum, and incidence of neonatal diabetes in the Emirate of AbuDhabi, United Arab Emirates. <i>American Journal of Medical Genetics, Part A</i> , 2016 , 170, 602-9	2.5	26
367	Systematic Population Screening, Using Biomarkers and Genetic Testing, Identifies 2.5% of the U.K. Pediatric Diabetes Population With Monogenic Diabetes. <i>Diabetes Care</i> , 2016 , 39, 1879-1888	14.6	117
366	Insights from Monogenic Diabetes 2016 , 223-240		

365	Isolated Pancreatic Aplasia Due to a Hypomorphic PTF1A Mutation. <i>Diabetes</i> , 2016 , 65, 2810-5	0.9	16
364	Somatic GPR101 Duplication Causing X-Linked Acrogigantism (XLAG)-Diagnosis and Management. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2016 , 101, 1927-30	5.6	34
363	Characteristics of maturity onset diabetes of the young in a large diabetes center. <i>Pediatric Diabetes</i> , 2016 , 17, 360-7	3.6	36
362	Single patient in GCK-MODY family successfully re-diagnosed into GCK-PNDM through targeted next-generation sequencing technology. <i>Acta Diabetologica</i> , 2016 , 53, 337-8	3.9	2
361	A Novel Homozygous Mutation in the KCNJ11 Gene of a Neonate with Congenital Hyperinsulinism and Successful Management with Sirolimus. <i>JCRPE Journal of Clinical Research in Pediatric Endocrinology</i> , 2016 , 8, 478-481	1.9	15
3 60	Clinical and Genetic Characteristics, Management and Long-Term Follow-Up of Turkish Patients with Congenital Hyperinsulinism. <i>JCRPE Journal of Clinical Research in Pediatric Endocrinology</i> , 2016 , 8, 197-204	1.9	2
359	GCK gene mutations are a common cause of childhood-onset MODY (maturity-onset diabetes of the young) in Turkey. <i>Clinical Endocrinology</i> , 2016 , 85, 393-9	3.4	12
358	Chromosome 17q12 microdeletions but not intragenic HNF1B mutations link developmental kidney disease and psychiatric disorder. <i>Kidney International</i> , 2016 , 90, 203-11	9.9	42
357	SOS1 frameshift mutations cause pure mucosal neuroma syndrome, a clinical phenotype distinct from multiple endocrine neoplasia type 2B. <i>Clinical Endocrinology</i> , 2016 , 84, 715-9	3.4	7
356	South Asian individuals with diabetes who are referred for MODY testing in the UK have a lower mutation pick-up rate than white European people. <i>Diabetologia</i> , 2016 , 59, 2262-5	10.3	13
355	Pitfalls of haplotype phasing from amplicon-based long-read sequencing. Scientific Reports, 2016 , 6, 21	7469	52
354	Successful transfer to sulfonylureas in KCNJ11 neonatal diabetes is determined by the mutation and duration of diabetes. <i>Diabetologia</i> , 2016 , 59, 1162-6	10.3	54
353	AIP mutations in young patients with acromegaly and the Tampico Giant: the Mexican experience. <i>Endocrine</i> , 2016 , 53, 402-11	4	14
352	Type 1 Diabetes Genetic Risk Score: A Novel Tool to Discriminate Monogenic and Type 1 Diabetes. <i>Diabetes</i> , 2016 , 65, 2094-2099	0.9	105
351	Differential regulation of serum microRNA expression by HNF1 and HNF1 transcription factors. <i>Diabetologia</i> , 2016 , 59, 1463-1473	10.3	15
350	Neonatal diabetes caused by a homozygous KCNJ11 mutation demonstrates that tiny changes in ATP sensitivity markedly affect diabetes risk. <i>Diabetologia</i> , 2016 , 59, 1430-1436	10.3	18
349	Clinical and genetic features of Argentinian children with diabetes-onset before 12months of age: Successful transfer from insulin to oral sulfonylurea. <i>Diabetes Research and Clinical Practice</i> , 2016 , 117, 104-10	7.4	7
348	The Common p.R114W HNF4A Mutation Causes a Distinct Clinical Subtype of Monogenic Diabetes. <i>Diabetes</i> , 2016 , 65, 3212-7	0.9	29

347	Diagnosis of monogenic diabetes: 10-Year experience in a large multi-ethnic diabetes center. Journal of Diabetes Investigation, 2016 , 7, 332-7	3.9	14
346	An exome sequencing strategy to diagnose lethal autosomal recessive disorders. <i>European Journal of Human Genetics</i> , 2015 , 23, 401-4	5.3	46
345	Efficacy and safety of sirolimus in a neonate with persistent hypoglycaemia following near-total pancreatectomy for hyperinsulinaemic hypoglycaemia. <i>Journal of Pediatric Endocrinology and Metabolism</i> , 2015 , 28, 1391-8	1.6	15
344	The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes: an international cohort study. <i>Lancet, The</i> , 2015 , 386, 957-63	40	186
343	Recognition and Management of Individuals With Hyperglycemia Because of a Heterozygous Glucokinase Mutation. <i>Diabetes Care</i> , 2015 , 38, 1383-92	14.6	157
342	A Deep Intronic HADH Splicing Mutation (c.636+471G>T) in a Congenital Hyperinsulinemic Hypoglycemia Case: Long Term Clinical Course. <i>JCRPE Journal of Clinical Research in Pediatric Endocrinology</i> , 2015 , 7, 144-7	1.9	10
341	Heterogeneous genetic background of the association of pheochromocytoma/paraganglioma and pituitary adenoma: results from a large patient cohort. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2015 , 100, E531-41	5.6	127
340	Variable Phenotype of Diabetes Mellitus in Siblings with a Homozygous PTF1A Enhancer Mutation. <i>Hormone Research in Paediatrics</i> , 2015 , 84, 206-11	3.3	10
339	Liver disease and other comorbidities in Wolcott-Rallison syndrome: different phenotype and variable associations in a large cohort. <i>Hormone Research in Paediatrics</i> , 2015 , 83, 190-7	3.3	19
338	Sirolimus therapy in a patient with severe hyperinsulinaemic hypoglycaemia due to a compound heterozygous ABCC8 gene mutation. <i>Journal of Pediatric Endocrinology and Metabolism</i> , 2015 , 28, 695-9) ^{1.6}	19
337	Clinical characteristics and molecular genetic analysis of 22 patients with neonatal diabetes from the South-Eastern region of Turkey: predominance of non-KATP channel mutations. <i>European Journal of Endocrinology</i> , 2015 , 172, 697-705	6.5	40
336	Genotype and phenotype correlations in Iranian patients with hyperinsulinaemic hypoglycaemia. <i>BMC Research Notes</i> , 2015 , 8, 350	2.3	6
335	Landscape of Familial Isolated and Young-Onset Pituitary Adenomas: Prospective Diagnosis in AIP Mutation Carriers. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2015 , 100, E1242-54	5.6	115
334	Biallelic RFX6 mutations can cause childhood as well as neonatal onset diabetes mellitus. <i>European Journal of Human Genetics</i> , 2015 , 23, 1744-8	5.3	24
333	Protein-induced hyperinsulinaemic hypoglycaemia due to a homozygous HADH mutation in three siblings of a Saudi family. <i>Journal of Pediatric Endocrinology and Metabolism</i> , 2015 , 28, 1073-7	1.6	15
332	Neonatal diabetes in Ukraine: incidence, genetics, clinical phenotype and treatment. <i>Journal of Pediatric Endocrinology and Metabolism</i> , 2015 , 28, 1279-86	1.6	25
331	HNF1B-associated renal and extra-renal disease-an expanding clinical spectrum. <i>Nature Reviews Nephrology</i> , 2015 , 11, 102-12	14.9	163
330	The value of in⊡itro studies in a case of neonatal diabetes with a novel Kir6.2-W68G mutation. <i>Clinical Case Reports (discontinued)</i> , 2015 , 3, 884-7	0.7	4

329	Sirolimus therapy following subtotal pancreatectomy in neonatal hyperinsulinemic hypoglycaemia: a case report. <i>International Journal of Pediatric Endocrinology (Springer)</i> , 2015 , 2015,	1.5	78
328	Alternating hypoglycemia and hyperglycemia in a toddler with a homozygous p.R1419H ABCC8 mutation: an unusual clinical picture. <i>Journal of Pediatric Endocrinology and Metabolism</i> , 2015 , 28, 345-5	1 ^{1.6}	6
327	Anemia in a Child with Deafness: Be Vigilant for a Rare Cause!. <i>Indian Journal of Hematology and Blood Transfusion</i> , 2015 , 31, 394-5	0.7	
326	Most people with long-duration type 1 diabetes in a large population-based study are insulin microsecretors. <i>Diabetes Care</i> , 2015 , 38, 323-8	14.6	76
325	Genome, Exome, and Targeted Next-Generation Sequencing in Neonatal Diabetes. <i>Pediatric Clinics of North America</i> , 2015 , 62, 1037-53	3.6	13
324	Expanding the Clinical Spectrum Associated With GLIS3 Mutations. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2015 , 100, E1362-9	5.6	53
323	Variants in KCNJ11 and BAD do not predict response to ketogenic dietary therapies for epilepsy. <i>Epilepsy Research</i> , 2015 , 118, 22-8	3	6
322	Assessment of the HNF1B Score as a Tool to Select Patients for HNF1B Genetic Testing. <i>Nephron</i> , 2015 , 130, 134-40	3.3	9
321	Increased plasma incretin concentrations identifies a subset of patients with persistent congenital hyperinsulinism without KATP channel gene defects. <i>Journal of Pediatrics</i> , 2015 , 166, 191-4	3.6	7
320	Three cases of Wolfram syndrome with different clinical aspects. <i>Journal of Pediatric Endocrinology and Metabolism</i> , 2015 , 28, 433-8	1.6	4
319	Primary hypothyroidism: an unusual manifestation of Wolcott-Rallison syndrome. <i>European Journal of Pediatrics</i> , 2014 , 173, 1565-8	4.1	4
318	Clinical utility gene card for: Maturity-onset diabetes of the young. <i>European Journal of Human Genetics</i> , 2014 , 22,	5.3	23
317	Recessive mutations in a distal PTF1A enhancer cause isolated pancreatic agenesis. <i>Nature Genetics</i> , 2014 , 46, 61-64	36.3	187
316	Activating AKT2 mutation: hypoinsulinemic hypoketotic hypoglycemia. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2014 , 99, 391-4	5.6	23
315	Clinical characteristics and phenotype-genotype analysis in Turkish patients with congenital hyperinsulinism; predominance of recessive KATP channel mutations. <i>European Journal of Endocrinology</i> , 2014 , 170, 885-92	6.5	13
314	Prevalence of vascular complications among patients with glucokinase mutations and prolonged, mild hyperglycemia. <i>JAMA - Journal of the American Medical Association</i> , 2014 , 311, 279-86	27.4	181
313	Permanent neonatal diabetes in siblings with novel C109Y INS mutation transmitted by an unaffected parent with somatic mosaicism. <i>Pediatric Diabetes</i> , 2014 , 15, 324-8	3.6	4
312	The 0.1% of the population with glucokinase monogenic diabetes can be recognized by clinical characteristics in pregnancy: the Atlantic Diabetes in Pregnancy cohort. <i>Diabetes Care</i> , 2014 , 37, 1230-6	14.6	90

311	Neurogenin 3 is important but not essential for pancreatic islet development in humans. <i>Diabetologia</i> , 2014 , 57, 2421-4	10.3	24
310	Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease. <i>Nature Genetics</i> , 2014 , 46, 812-814	36.3	328
309	Permanent neonatal diabetes misdiagnosed as type 1 diabetes in a 28-year-old female: a life-changing diagnosis. <i>Diabetes Research and Clinical Practice</i> , 2014 , 106, e22-4	7.4	1
308	Sirolimus therapy in infants with severe hyperinsulinemic hypoglycemia. <i>New England Journal of Medicine</i> , 2014 , 370, 1131-7	59.2	97
307	Fanconi-Bickel syndrome - mutation in SLC2A2 gene. <i>Indian Journal of Pediatrics</i> , 2014 , 81, 1237-9	3	13
306	Ten years of the national genetic diabetes nurse network: a model for the translation of genetic information into clinical care. <i>Clinical Medicine</i> , 2014 , 14, 117-21	1.9	9
305	Analysis of transcription factors key for mouse pancreatic development establishes NKX2-2 and MNX1 mutations as causes of neonatal diabetes in man. <i>Cell Metabolism</i> , 2014 , 19, 146-54	24.6	102
304	Reclassification of diabetes etiology in a family with multiple diabetes phenotypes. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2014 , 99, E1067-71	5.6	4
303	Long-term follow-up of children with congenital hyperinsulinism on octreotide therapy. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2014 , 99, 3660-7	5.6	42
302	Next generation sequencing of chromosomal rearrangements in patients with split-hand/split-foot malformation provides evidence for DYNC1I1 exonic enhancers of DLX5/6 expression in humans. Journal of Medical Genetics, 2014, 51, 264-7	5.8	33
301	Pancreatic endocrine and exocrine function in children following near-total pancreatectomy for diffuse congenital hyperinsulinism. <i>PLoS ONE</i> , 2014 , 9, e98054	3.7	50
300	Chromosome 6q24 transient neonatal diabetes mellitus and protein sensitive hyperinsulinaemic hypoglycaemia. <i>Journal of Pediatric Endocrinology and Metabolism</i> , 2014 , 27, 1065-9	1.6	1
299	Neonatal diabetes in an infant of diabetic mother: same novel INS missense mutation in the mother and her offspring. <i>Journal of Pediatric Endocrinology and Metabolism</i> , 2014 , 27, 745-8	1.6	3
298	Phenotypic severity of homozygous GCK mutations causing neonatal or childhood-onset diabetes is primarily mediated through effects on protein stability. <i>Human Molecular Genetics</i> , 2014 , 23, 6432-40	5.6	30
297	The HNF4A R76W mutation causes atypical dominant Fanconi syndrome in addition to a Lell phenotype. <i>Journal of Medical Genetics</i> , 2014 , 51, 165-9	5.8	57
296	Next-Generation Sequencing for the Diagnosis of Monogenic Diabetes and Discovery of Novel Aetiologies. <i>Frontiers in Diabetes</i> , 2014 , 71-86	0.6	2
295	Clinical and histological heterogeneity of congenital hyperinsulinism due to paternally inherited heterozygous ABCC8/KCNJ11 mutations. <i>European Journal of Endocrinology</i> , 2014 , 171, 685-95	6.5	27
294	A combination of nifedipine and octreotide treatment in an hyperinsulinemic hypoglycemic infant. JCRPE Journal of Clinical Research in Pediatric Endocrinology, 2014 , 6, 119-21	1.9	14

293	GATA4 mutations are a cause of neonatal and childhood-onset diabetes. <i>Diabetes</i> , 2014 , 63, 2888-94	0.9	80
292	ISPAD Clinical Practice Consensus Guidelines 2014. The diagnosis and management of monogenic diabetes in children and adolescents. <i>Pediatric Diabetes</i> , 2014 , 15 Suppl 20, 47-64	3.6	133
291	Permanent neonatal diabetes mellitus in Jordan. <i>Journal of Pediatric Endocrinology and Metabolism</i> , 2014 , 27, 879-83	1.6	9
290	Cross-sectional and longitudinal studies suggest pharmacological treatment used in patients with glucokinase mutations does not alter glycaemia. <i>Diabetologia</i> , 2014 , 57, 54-6	10.3	122
289	Permanent neonatal diabetes mellitus due to an ABCC8 mutation: a case report. <i>JOP: Journal of the Pancreas</i> , 2014 , 15, 198-200	1.2	3
288	Improved genetic testing for monogenic diabetes using targeted next-generation sequencing. <i>Diabetologia</i> , 2013 , 56, 1958-63	10.3	201
287	Clinical presentation of 6q24 transient neonatal diabetes mellitus (6q24 TNDM) and genotype-phenotype correlation in an international cohort of patients. <i>Diabetologia</i> , 2013 , 56, 758-62	10.3	90
286	Hypoglycaemia following diabetes remission in patients with 6q24 methylation defects: expanding the clinical phenotype. <i>Diabetologia</i> , 2013 , 56, 218-21	10.3	19
285	Identification of a SLC19A2 nonsense mutation in Persian families with thiamine-responsive megaloblastic anemia. <i>Gene</i> , 2013 , 519, 295-7	3.8	18
284	Prevalence, characteristics and clinical diagnosis of maturity onset diabetes of the young due to mutations in HNF1A, HNF4A, and glucokinase: results from the SEARCH for Diabetes in Youth. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2013 , 98, 4055-62	5.6	219
283	Maturity onset diabetes of the young: identification and diagnosis. <i>Annals of Clinical Biochemistry</i> , 2013 , 50, 403-15	2.2	96
282	A novel GATA6 mutation leading to congenital heart defects and permanent neonatal diabetes: a case report. <i>Diabetes and Metabolism</i> , 2013 , 39, 370-4	5.4	17
281	Permanent neonatal diabetes due to a novel L105P (c.314T>C; p.Leu105Pro) heterozygous mutation in insulin gene. <i>International Journal of Diabetes in Developing Countries</i> , 2013 , 33, 226-228	0.8	1
280	Digenic heterozygous HNF1A and HNF4A mutations in two siblings with childhood-onset diabetes. <i>Pediatric Diabetes</i> , 2013 , 14, 535-8	3.6	11
279	Mutation of HES7 in a large extended family with spondylocostal dysostosis and dextrocardia with situs inversus. <i>American Journal of Medical Genetics, Part A,</i> 2013 , 161A, 2244-9	2.5	21
278	Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1 alpha and 4 alpha in maturity-onset diabetes of the young and hyperinsulinemic hypoglycemia. <i>Human Mutation</i> , 2013, 34, 669-85	4.7	119
277	Permanent neonatal diabetes caused by a novel mutation in the INS gene. <i>Diabetes Research and Clinical Practice</i> , 2013 , 99, e5-8	7.4	2
276	HNF1B deletions in patients with young-onset diabetes but no known renal disease. <i>Diabetic Medicine</i> , 2013 , 30, 114-7	3.5	27

275	An in-frame deletion at the polymerase active site of POLD1 causes a multisystem disorder with lipodystrophy. <i>Nature Genetics</i> , 2013 , 45, 947-50	36.3	120
274	Next-generation sequencing reveals deep intronic cryptic ABCC8 and HADH splicing founder mutations causing hyperinsulinism by pseudoexon activation. <i>American Journal of Human Genetics</i> , 2013 , 92, 131-6	11	66
273	Hepatoblastoma in a child with a paternally-inherited ABCC8 mutation and mosaic paternal uniparental disomy 11p causing focal congenital hyperinsulinism. <i>European Journal of Medical Genetics</i> , 2013 , 56, 114-7	2.6	16
272	Clinical and molecular characterisation of hyperinsulinaemic hypoglycaemia in infants born small-for-gestational age. <i>Archives of Disease in Childhood: Fetal and Neonatal Edition</i> , 2013 , 98, F356-8	4.7	30
271	Clinical and molecular characterisation of 300 patients with congenital hyperinsulinism. <i>European Journal of Endocrinology</i> , 2013 , 168, 557-64	6.5	147
270	GATA6 mutations cause a broad phenotypic spectrum of diabetes from pancreatic agenesis to adult-onset diabetes without exocrine insufficiency. <i>Diabetes</i> , 2013 , 62, 993-7	0.9	104
269	Comment on: Khurana et al. The diagnosis of neonatal diabetes in a mother at 25 years of age. Diabetes Care 2012;35:e59. <i>Diabetes Care</i> , 2013 , 36, e31	14.6	2
268	tRNA methyltransferase homolog gene TRMT10A mutation in young onset diabetes and primary microcephaly in humans. <i>PLoS Genetics</i> , 2013 , 9, e1003888	6	75
267	A comparison of methods for EGFR mutation testing in non-small cell lung cancer. <i>Diagnostic Molecular Pathology</i> , 2013 , 22, 190-5		22
266	Diabetes mellitus in neonates and infants: genetic heterogeneity, clinical approach to diagnosis, and therapeutic options. <i>Hormone Research in Paediatrics</i> , 2013 , 80, 137-46	3.3	67
265	Biallelic PDX1 (insulin promoter factor 1) mutations causing neonatal diabetes without exocrine pancreatic insufficiency. <i>Diabetic Medicine</i> , 2013 , 30, e197-200	3.5	37
264	Thiamine responsive megaloblastic anemia: a novel SLC19A2 compound heterozygous mutation in two siblings. <i>Pediatric Diabetes</i> , 2013 , 14, 384-7	3.6	18
263	Variable phenotype in five patients with Wolcott-Rallison syndrome due to the same EIF2AK3 (c.1259delA) mutation. <i>Journal of Pediatric Endocrinology and Metabolism</i> , 2013 , 26, 757-60	1.6	7
262	Genetic sequencing breakthrough to aid treatment for congenital hyperinsulinism. <i>British Journal of Hospital Medicine (London, England: 2005)</i> , 2013 , 74, 68-68	0.8	
261	Thiamine responsive megaloblastic anemia with a novel SLC19A2 mutation presenting with myeloid maturational arrest. <i>Pediatric Blood and Cancer</i> , 2013 , 60, 1242-3	3	5
260	Prematurity, macrosomia, hyperinsulinaemic hypoglycaemia and a dominant ABCC8 gene mutation. <i>BMJ Case Reports</i> , 2013 , 2013,	0.9	4
259	Permanent neonatal diabetes mellitus: prevalence and genetic diagnosis in the SEARCH for Diabetes in Youth Study. <i>Pediatric Diabetes</i> , 2013 , 14, 174-80	3.6	42
258	Use of HbA1c in the identification of patients with hyperglycaemia caused by a glucokinase mutation: observational case control studies. <i>PLoS ONE</i> , 2013 , 8, e65326	3.7	83

(2012-2012)

257	Early-onset, severe lipoatrophy in a patient with permanent neonatal diabetes mellitus secondary to a recessive mutation in the INS gene. <i>Pediatric Diabetes</i> , 2012 , 13, e26-9	3.6	1
256	KATP channel mutations in infants with permanent diabetes diagnosed after 6 months of life. <i>Pediatric Diabetes</i> , 2012 , 13, 322-5	3.6	49
255	Incidence, genetics, and clinical phenotype of permanent neonatal diabetes mellitus in northwest Saudi Arabia. <i>Pediatric Diabetes</i> , 2012 , 13, 499-505	3.6	60
254	Recessive SLC19A2 mutations are a cause of neonatal diabetes mellitus in thiamine-responsive megaloblastic anaemia. <i>Pediatric Diabetes</i> , 2012 , 13, 314-21	3.6	43
253	Heterozygous ABCC8 mutations are a cause of MODY. <i>Diabetologia</i> , 2012 , 55, 123-7	10.3	105
252	Growth in PHEX-associated X-linked hypophosphatemic rickets: the importance of early treatment. <i>Pediatric Nephrology</i> , 2012 , 27, 581-8	3.2	47
251	Systematic assessment of etiology in adults with a clinical diagnosis of young-onset type 2 diabetes is a successful strategy for identifying maturity-onset diabetes of the young. <i>Diabetes Care</i> , 2012 , 35, 1206-12	14.6	122
250	SLC2A2 mutations can cause neonatal diabetes, suggesting GLUT2 may have a role in human insulin secretion. <i>Diabetologia</i> , 2012 , 55, 2381-5	10.3	82
249	Childhood presentation of COL4A1 mutations. <i>Developmental Medicine and Child Neurology</i> , 2012 , 54, 569-74	3.3	47
248	Clinical and molecular basis of transient neonatal diabetes mellitus in Brazilian children. <i>Diabetes Research and Clinical Practice</i> , 2012 , 97, e41-4	7.4	3
247	Lipoprotein composition in HNF1A-MODY: differentiating between HNF1A-MODY and type 2 diabetes. <i>Clinica Chimica Acta</i> , 2012 , 413, 927-32	6.2	30
246	Leucine-sensitive hyperinsulinaemic hypoglycaemia in patients with loss of function mutations in 3-Hydroxyacyl-CoA Dehydrogenase. <i>Orphanet Journal of Rare Diseases</i> , 2012 , 7, 25	4.2	26
245	Identification of a novel nonsense mutation and a missense substitution in the AGPAT2 gene causing congenital generalized lipodystrophy type 1. <i>European Journal of Medical Genetics</i> , 2012 , 55, 620-4	2.6	11
244	Genetic studies in a coexistence of acromegaly, pheochromocytoma, gastrointestinal stromal tumor (GIST) and thyroid follicular adenoma. <i>Arquivos Brasileiros De Endocrinologia E Metabologia</i> , 2012 , 56, 507-12		12
243	Permanent neonatal diabetes caused by a novel mutation. <i>Indian Pediatrics</i> , 2012 , 49, 486-8	1.2	6
242	The development and validation of a clinical prediction model to determine the probability of MODY in patients with young-onset diabetes. <i>Diabetologia</i> , 2012 , 55, 1265-72	10.3	172
241	Congenital hyperinsulinism: marked clinical heterogeneity in siblings with identical mutations in the ABCC8 gene. <i>Clinical Endocrinology</i> , 2012 , 76, 312-3	3.4	8
240	Galactokinase deficiency in a patient with congenital hyperinsulinism. <i>JIMD Reports</i> , 2012 , 5, 7-11	1.9	3

239	Wolcott-Rallison syndrome due to a novel mutation (R491X) in EIF2AK3 gene. <i>JCRPE Journal of Clinical Research in Pediatric Endocrinology</i> , 2012 , 4, 101-3	1.9	8
238	The association of cardiac ventricular hypertrophy with congenital hyperinsulinism. <i>European Journal of Endocrinology</i> , 2012 , 167, 619-24	6.5	6
237	Amino acid properties may be useful in predicting clinical outcome in patients with Kir6.2 neonatal diabetes. <i>European Journal of Endocrinology</i> , 2012 , 167, 417-21	6.5	3
236	Alagille syndrome: pathogenesis, diagnosis and management. <i>European Journal of Human Genetics</i> , 2012 , 20, 251-7	5.3	239
235	The heterogeneity of focal forms of congenital hyperinsulinism. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2012 , 97, E94-9	5.6	25
234	Permanent neonatal diabetes: different aetiology in Arabs compared to Europeans. <i>Archives of Disease in Childhood</i> , 2012 , 97, 721-3	2.2	25
233	Antenatal diagnosis of fetal genotype determines if maternal hyperglycemia due to a glucokinase mutation requires treatment. <i>Diabetes Care</i> , 2012 , 35, 1832-4	14.6	41
232	Permanent neonatal diabetes mellitus due to KCNJ11 mutation in a Portuguese family: transition from insulin to oral sulfonylureas. <i>Journal of Pediatric Endocrinology and Metabolism</i> , 2012 , 25, 367-70	1.6	15
231	Variability in the age at diagnosis of diabetes in two unrelated patients with a homozygous glucokinase gene mutation. <i>Journal of Pediatric Endocrinology and Metabolism</i> , 2012 , 25, 805-8	1.6	6
230	Insights into the pathogenicity of rare missense GCK variants from the identification and functional characterization of compound heterozygous and double mutations inherited in cis. <i>Diabetes Care</i> , 2012 , 35, 1482-4	14.6	9
229	Many patients have an identifiable genetic cause of HirschsprungMdisease. <i>BMJ, The</i> , 2012 , 345, e8199	5.9	2
228	GATA6 haploinsufficiency causes pancreatic agenesis in humans. <i>Nature Genetics</i> , 2011 , 44, 20-22	36.3	195
227	Urinary C-peptide creatinine ratio is a practical outpatient tool for identifying hepatocyte nuclear factor 1-{alpha}/hepatocyte nuclear factor 4-{alpha} maturity-onset diabetes of the young from long-duration type 1 diabetes. <i>Diabetes Care</i> , 2011 , 34, 286-91	14.6	96
226	Clinical characteristics of recessive and dominant congenital hyperinsulinism due to mutation(s) in the ABCC8/KCNJ11 genes encoding the ATP-sensitive potasium channel in the pancreatic beta cell. <i>Journal of Pediatric Endocrinology and Metabolism</i> , 2011 , 24, 1019-23	1.6	13
225	Permanent Neonatal Diabetes and Enteric Anendocrinosis Associated With Biallelic Mutations in NEUROG3. <i>Diabetes</i> , 2011 , 60, 1349-53	0.9	114
224	A pathway to insulin independence in newborns and infants with diabetes. <i>Journal of Perinatology</i> , 2011 , 31, 567-70	3.1	1
223	Cushing syndrome secondary to a thymic carcinoid tumor due to multiple endocrine neoplasia type 1. <i>Endocrine Practice</i> , 2011 , 17, e92-6	3.2	16
222	High-sensitivity CRP discriminates HNF1A-MODY from other subtypes of diabetes. <i>Diabetes Care</i> , 2011 , 34, 1860-2	14.6	76

221	Paternal Uniparental Isodisomy of Chromosome 11p15.5 within the Pancreas Causes Isolated Hyperinsulinemic Hypoglycemia. <i>Frontiers in Endocrinology</i> , 2011 , 2, 66	5.7	8
220	Persistently autoantibody negative (PAN) type 1 diabetes mellitus in children. <i>Pediatric Diabetes</i> , 2011 , 12, 142-9	3.6	44
219	KCNJ11 activating mutations cause both transient and permanent neonatal diabetes mellitus in Cypriot patients. <i>Pediatric Diabetes</i> , 2011 , 12, 133-7	3.6	5
218	Sequencing PDX1 (insulin promoter factor 1) in 1788 UK individuals found 5% had a low frequency coding variant, but these variants are not associated with Type 2 diabetes. <i>Diabetic Medicine</i> , 2011 , 28, 681-4	3.5	10
217	Islet autoantibodies can discriminate maturity-onset diabetes of the young (MODY) from Type 1 diabetes. <i>Diabetic Medicine</i> , 2011 , 28, 1028-33	3.5	127
216	A conserved tryptophan at the membrane-water interface acts as a gatekeeper for Kir6.2/SUR1 channels and causes neonatal diabetes when mutated. <i>Journal of Physiology</i> , 2011 , 589, 3071-83	3.9	13
215	Exome sequencing identifies a DYNC1H1 mutation in a large pedigree with dominant axonal Charcot-Marie-Tooth disease. <i>American Journal of Human Genetics</i> , 2011 , 89, 308-12	11	199
214	The previously reported T342P GCK missense variant is not a pathogenic mutation causing MODY. <i>Diabetologia</i> , 2011 , 54, 2202-5	10.3	11
213	Dysmyelination of the cerebral white matter with microdeletion at 6p25. <i>Indian Pediatrics</i> , 2011 , 48, 72	7 19 2	10
212	Clinical characterization of a newly described neonatal diabetes syndrome caused by RFX6 mutations. <i>American Journal of Medical Genetics, Part A,</i> 2011 , 155A, 2821-5	2.5	35
211	GeneScreen: a program for high-throughput mutation detection in DNA sequence electropherograms. <i>Journal of Medical Genetics</i> , 2011 , 48, 123-30	5.8	17
210	Genome-wide homozygosity analysis reveals HADH mutations as a common cause of diazoxide-responsive hyperinsulinemic-hypoglycemia in consanguineous pedigrees. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2011 , 96, E498-502	5.6	44
209	Novel GLIS3 mutations demonstrate an extended multisystem phenotype. <i>European Journal of Endocrinology</i> , 2011 , 164, 437-43	6.5	75
208	AIP mutation in pituitary adenomas in the 18th century and today. <i>New England Journal of Medicine</i> , 2011 , 364, 43-50	59.2	122
207	Characterization of ABCC8 and KCNJ11 gene mutations and phenotypes in Korean patients with congenital hyperinsulinism. <i>European Journal of Endocrinology</i> , 2011 , 164, 919-26	6.5	24
206	In vitro recovery of ATP-sensitive potassium channels in Etells from patients with congenital hyperinsulinism of infancy. <i>Diabetes</i> , 2011 , 60, 1223-8	0.9	16
205	Mutations of the same conserved glutamate residue in NBD2 of the sulfonylurea receptor 1 subunit of the KATP channel can result in either hyperinsulinism or neonatal diabetes. <i>Diabetes</i> , 2011 , 60, 1813-22	0.9	20
204	Discovery of a novel site regulating glucokinase activity following characterization of a new mutation causing hyperinsulinemic hypoglycemia in humans. <i>Journal of Biological Chemistry</i> , 2011 , 286, 19118-26	5.4	17

203	Biochemical evaluation of an infant with hypoglycemia resulting from a novel de novo mutation of the GLUD1 gene and hyperinsulinism-hyperammonemia syndrome. <i>Journal of Pediatric Endocrinology and Metabolism</i> , 2011 , 24, 573-7	1.6	3
202	Transient neonatal diabetes with two novel mutations in the KCNJ11 gene and response to sulfonylurea treatment in a preterm infant. <i>Journal of Pediatric Endocrinology and Metabolism</i> , 2011 , 24, 1077-80	1.6	11
201	Familial focal congenital hyperinsulinism. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2011 , 96, 24-8	5.6	26
200	Congenital hyperinsulinism caused by mutations in ABCC8 (SUR1) gene. <i>Indian Pediatrics</i> , 2011 , 48, 733	3-4 _{1.2}	2
199	Increased all-cause and cardiovascular mortality in monogenic diabetes as a result of mutations in the HNF1A gene. <i>Diabetic Medicine</i> , 2010 , 27, 157-61	3.5	76
198	Entities and frequency of neonatal diabetes: data from the diabetes documentation and quality management system (DPV). <i>Diabetic Medicine</i> , 2010 , 27, 709-12	3.5	63
197	Incidence of neonatal diabetes in Austria-calculation based on the Austrian Diabetes Register. <i>Pediatric Diabetes</i> , 2010 , 11, 18-23	3.6	42
196	Genetic Testing in Diabetes Mellitus 2010 , 17-25		3
195	Interaction between mutations in the slide helix of Kir6.2 associated with neonatal diabetes and neurological symptoms. <i>Human Molecular Genetics</i> , 2010 , 19, 963-72	5.6	15
194	Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 3105-10	11.5	149
193	Congenital hyperinsulinism due to a compound heterozygous ABCC8 mutation with spontaneous resolution at eight weeks. <i>Hormone Research in Paediatrics</i> , 2010 , 73, 287-92	3.3	19
192	Focal congenital hyperinsulinism in a patient with septo-optic dysplasia. <i>Nature Reviews Endocrinology</i> , 2010 , 6, 646-50	15.2	4
191	Polygenic risk variants for type 2 diabetes susceptibility modify age at diagnosis in monogenic HNF1A diabetes. <i>Diabetes</i> , 2010 , 59, 266-71	0.9	25
190	Homozygous mutations in NEUROD1 are responsible for a novel syndrome of permanent neonatal diabetes and neurological abnormalities. <i>Diabetes</i> , 2010 , 59, 2326-31	0.9	116
189	In vitro expression of NGN3 identifies RAB3B as the predominant Ras-associated GTP-binding protein 3 family member in human islets. <i>Journal of Endocrinology</i> , 2010 , 207, 151-61	4.7	18
188	Using SIFT and PolyPhen to predict loss-of-function and gain-of-function mutations. <i>Genetic Testing and Molecular Biomarkers</i> , 2010 , 14, 533-7	1.6	247
187	Maturity-onset diabetes of the young (MODY): how many cases are we missing?. <i>Diabetologia</i> , 2010 , 53, 2504-8	10.3	432
186	Mutations in the VNTR of the carboxyl-ester lipase gene (CEL) are a rare cause of monogenic diabetes. <i>Human Genetics</i> , 2010 , 127, 55-64	6.3	44

185	The renal cysts and diabetes (RCAD) syndrome in a child with deletion of the hepatocyte nuclear factor-1 dene. <i>Indian Journal of Pediatrics</i> , 2010 , 77, 1429-31	3	2
184	Permanent neonatal diabetes due to activating mutations in ABCC8 and KCNJ11. <i>Reviews in Endocrine and Metabolic Disorders</i> , 2010 , 11, 193-8	10.5	60
183	Mutations in the hepatocyte nuclear factor-1[(HNF1B) gene are common with combined uterine and renal malformations but are not found with isolated uterine malformations. <i>American Journal of Obstetrics and Gynecology</i> , 2010 , 203, 364.e1-5	6.4	39
182	Characterization of aryl hydrocarbon receptor interacting protein (AIP) mutations in familial isolated pituitary adenoma families. <i>Human Mutation</i> , 2010 , 31, 950-60	4.7	136
181	Autosomal dominant spondylocostal dysostosis in three generations of a Macedonian family: Negative mutation analysis of DLL3, MESP2, HES7, and LFNG. <i>American Journal of Medical Genetics, Part A</i> , 2010 , 152A, 1378-82	2.5	13
180	Sequencing of candidate genes selected by beta cell experts in monogenic diabetes of unknown aetiology. <i>JOP: Journal of the Pancreas</i> , 2010 , 11, 14-7	1.2	8
179	An in-frame deletion in Kir6.2 (KCNJ11) causing neonatal diabetes reveals a site of interaction between Kir6.2 and SUR1. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2009 , 94, 2551-7	5.6	15
178	Spondylocostal dysostosis associated with methylmalonic aciduria. <i>Genetic Testing and Molecular Biomarkers</i> , 2009 , 13, 181-3	1.6	1
177	Hyperinsulinism-hyperammonaemia syndrome: novel mutations in the GLUD1 gene and genotype-phenotype correlations. <i>European Journal of Endocrinology</i> , 2009 , 161, 731-5	6.5	65
176	Semi-automated unidirectional sequence analysis for mutation detection in a clinical diagnostic setting. <i>Genetic Testing and Molecular Biomarkers</i> , 2009 , 13, 381-6	1.6	14
175	3-Hydroxyacyl-coenzyme A dehydrogenase deficiency and hyperinsulinemic hypoglycemia: characterization of a novel mutation and severe dietary protein sensitivity. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2009 , 94, 2221-5	5.6	64
174	RET gene mutations are not a common cause of congenital solitary functioning kidney in adults. <i>CKJ: Clinical Kidney Journal</i> , 2009 , 2, 183-4	4.5	
173	Severe insulin resistance and intrauterine growth deficiency associated with haploinsufficiency for INSR and CHN2: new insights into synergistic pathways involved in growth and metabolism. <i>Diabetes</i> , 2009 , 58, 2954-61	0.9	21
172	Wolcott-Rallison syndrome is the most common genetic cause of permanent neonatal diabetes in consanguineous families. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2009 , 94, 4162-70	5.6	103
171	Identification of a novel beta-cell glucokinase (GCK) promoter mutation (-71G>C) that modulates GCK gene expression through loss of allele-specific Sp1 binding causing mild fasting hyperglycemia in humans. <i>Diabetes</i> , 2009 , 58, 1929-35	0.9	28
170	Update of mutations in the genes encoding the pancreatic beta-cell K(ATP) channel subunits Kir6.2 (KCNJ11) and sulfonylurea receptor 1 (ABCC8) in diabetes mellitus and hyperinsulinism. <i>Human Mutation</i> , 2009 , 30, 170-80	4.7	181
169	Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. <i>Human Mutation</i> , 2009 , 30, 1512-26	4.7	324
168	Adjacent mutations in the gating loop of Kir6.2 produce neonatal diabetes and hyperinsulinism. <i>EMBO Molecular Medicine</i> , 2009 , 1, 166-77	12	34

167	Referral rates for diagnostic testing support an incidence of permanent neonatal diabetes in three European countries of at least 1 in 260,000 live births. <i>Diabetologia</i> , 2009 , 52, 1683-5	10.3	98
166	Germline mutations in the CDKN1B gene encoding p27 Kip1 are a rare cause of multiple endocrine neoplasia type 1. <i>Clinical Endocrinology</i> , 2009 , 70, 499-500	3.4	19
165	Mutations in the ABCC8 (SUR1 subunit of the K(ATP) channel) gene are associated with a variable clinical phenotype. <i>Clinical Endocrinology</i> , 2009 , 71, 358-62	3.4	30
164	Pregnancy outcome in patients with raised blood glucose due to a heterozygous glucokinase gene mutation. <i>Diabetic Medicine</i> , 2009 , 26, 14-8	3.5	94
163	A genetic diagnosis of HNF1A diabetes alters treatment and improves glycaemic control in the majority of insulin-treated patients. <i>Diabetic Medicine</i> , 2009 , 26, 437-41	3.5	168
162	Neonatal hyperinsulinaemic hypoglycaemia and monogenic diabetes due to a heterozygous mutation of the HNF4A gene. <i>Australian and New Zealand Journal of Obstetrics and Gynaecology</i> , 2009 , 49, 328-30	1.7	13
161	HNF1B mutations associate with hypomagnesemia and renal magnesium wasting. <i>Journal of the American Society of Nephrology: JASN</i> , 2009 , 20, 1123-31	12.7	192
160	Evaluation of 13q14 status in patients with chronic lymphocytic leukemia using single nucleotide polymorphism-based techniques. <i>Journal of Molecular Diagnostics</i> , 2009 , 11, 298-305	5.1	4
159	Evaluation of 13q14 status in multiple myeloma by digital single nucleotide polymorphism technology. <i>Journal of Molecular Diagnostics</i> , 2009 , 11, 450-7	5.1	1
158	Clinical heterogeneity in patients with FOXP3 mutations presenting with permanent neonatal diabetes. <i>Diabetes Care</i> , 2009 , 32, 111-6	14.6	86
157	Concordance of assays designed for the quantification of JAK2V617F: a multicenter study. <i>Haematologica</i> , 2009 , 94, 38-45	6.6	74
156	Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. <i>Nature Genetics</i> , 2008 , 40, 949-51	36.3	417
155	Analysis of gross deletions in the MEN1 gene in patients with multiple endocrine neoplasia type 1. <i>Clinical Endocrinology</i> , 2008 , 68, 350-4	3.4	33
154	Permanent neonatal diabetes mellitus caused by a novel homozygous (T168A) glucokinase (GCK) mutation: initial response to oral sulphonylurea therapy. <i>Journal of Pediatrics</i> , 2008 , 153, 122-6	3.6	40
153	Clinical implications of a molecular genetic classification of monogenic beta-cell diabetes. <i>Nature Clinical Practice Endocrinology and Metabolism</i> , 2008 , 4, 200-13		367
152	Gene duplications resulting in over expression of glucokinase are not a common cause of hypoglycaemia of infancy in humans. <i>Molecular Genetics and Metabolism</i> , 2008 , 94, 268-9	3.7	3
151	Mutations in the glucokinase gene of the fetus result in reduced placental weight. <i>Diabetes Care</i> , 2008 , 31, 753-7	14.6	20
150	Transcription factor HNF1beta and novel partners affect nephrogenesis. <i>Kidney International</i> , 2008 , 74, 210-7	9.9	25

(2008-2008)

149	Effective treatment with oral sulfonylureas in patients with diabetes due to sulfonylurea receptor 1 (SUR1) mutations. <i>Diabetes Care</i> , 2008 , 31, 204-9	14.6	203
148	Activating glucokinase (GCK) mutations as a cause of medically responsive congenital hyperinsulinism: prevalence in children and characterisation of a novel GCK mutation. <i>European Journal of Endocrinology</i> , 2008 , 159, 27-34	6.5	84
147	Mosaic paternal uniparental isodisomy and an ABCC8 gene mutation in a patient with permanent neonatal diabetes and hemihypertrophy. <i>Diabetes</i> , 2008 , 57, 255-8	0.9	12
146	Persistent hyperinsulinemic hypoglycemia and maturity-onset diabetes of the young due to heterozygous HNF4A mutations. <i>Diabetes</i> , 2008 , 57, 1659-63	0.9	113
145	Coincidence of a novel KCNJ11 missense variant R365H with a paternally inherited 6q24 duplication in a patient with transient neonatal diabetes. <i>Diabetes Care</i> , 2008 , 31, 1736-7	14.6	1
144	The diabetic phenotype in HNF4A mutation carriers is moderated by the expression of HNF4A isoforms from the P1 promoter during fetal development. <i>Diabetes</i> , 2008 , 57, 1745-52	0.9	55
143	An ABCC8 gene mutation and mosaic uniparental isodisomy resulting in atypical diffuse congenital hyperinsulinism. <i>Diabetes</i> , 2008 , 57, 259-63	0.9	49
142	Diabetes susceptibility in the Canadian Oji-Cree population is moderated by abnormal mRNA processing of HNF1A G319S transcripts. <i>Diabetes</i> , 2008 , 57, 1978-82	0.9	23
141	Human CHN1 mutations hyperactivate alpha2-chimaerin and cause DuaneMretraction syndrome. <i>Science</i> , 2008 , 321, 839-43	33.3	126
140	Whole gene deletion of the hepatocyte nuclear factor-1beta gene in a patient with the prune-belly syndrome. <i>Nephrology Dialysis Transplantation</i> , 2008 , 23, 2412-5	4.3	35
139	Severe intrauterine growth retardation and atypical diabetes associated with a translocation breakpoint disrupting regulation of the insulin-like growth factor 2 gene. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2008 , 93, 4373-80	5.6	30
139	breakpoint disrupting regulation of the insulin-like growth factor 2 gene. Journal of Clinical	5.6 0.9	30 299
	breakpoint disrupting regulation of the insulin-like growth factor 2 gene. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2008 , 93, 4373-80 Insulin mutation screening in 1,044 patients with diabetes: mutations in the INS gene are a common cause of neonatal diabetes but a rare cause of diabetes diagnosed in childhood or adulthood.		
138	breakpoint disrupting regulation of the insulin-like growth factor 2 gene. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2008 , 93, 4373-80 Insulin mutation screening in 1,044 patients with diabetes: mutations in the INS gene are a common cause of neonatal diabetes but a rare cause of diabetes diagnosed in childhood or adulthood. <i>Diabetes</i> , 2008 , 57, 1034-42 Glibenclamide unresponsiveness in a Brazilian child with permanent neonatal diabetes mellitus and DEND syndrome due to a C166Y mutation in KCNJ11 (Kir6.2) gene. <i>Arquivos Brasileiros De</i>		299
138	breakpoint disrupting regulation of the insulin-like growth factor 2 gene. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2008 , 93, 4373-80 Insulin mutation screening in 1,044 patients with diabetes: mutations in the INS gene are a common cause of neonatal diabetes but a rare cause of diabetes diagnosed in childhood or adulthood. <i>Diabetes</i> , 2008 , 57, 1034-42 Glibenclamide unresponsiveness in a Brazilian child with permanent neonatal diabetes mellitus and DEND syndrome due to a C166Y mutation in KCNJ11 (Kir6.2) gene. <i>Arquivos Brasileiros De Endocrinologia E Metabologia</i> , 2008 , 52, 1350-5 A Kir6.2 mutation causing severe functional effects in vitro produces neonatal diabetes without the	0.9	299
138 137 136	breakpoint disrupting regulation of the insulin-like growth factor 2 gene. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2008 , 93, 4373-80 Insulin mutation screening in 1,044 patients with diabetes: mutations in the INS gene are a common cause of neonatal diabetes but a rare cause of diabetes diagnosed in childhood or adulthood. <i>Diabetes</i> , 2008 , 57, 1034-42 Glibenclamide unresponsiveness in a Brazilian child with permanent neonatal diabetes mellitus and DEND syndrome due to a C166Y mutation in KCNJ11 (Kir6.2) gene. <i>Arquivos Brasileiros De Endocrinologia E Metabologia</i> , 2008 , 52, 1350-5 A Kir6.2 mutation causing severe functional effects in vitro produces neonatal diabetes without the expected neurological complications. <i>Diabetologia</i> , 2008 , 51, 802-10 Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the	0.9	2991625
138 137 136	breakpoint disrupting regulation of the insulin-like growth factor 2 gene. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2008 , 93, 4373-80 Insulin mutation screening in 1,044 patients with diabetes: mutations in the INS gene are a common cause of neonatal diabetes but a rare cause of diabetes diagnosed in childhood or adulthood. <i>Diabetes</i> , 2008 , 57, 1034-42 Glibenclamide unresponsiveness in a Brazilian child with permanent neonatal diabetes mellitus and DEND syndrome due to a C166Y mutation in KCNJ11 (Kir6.2) gene. <i>Arquivos Brasileiros De Endocrinologia E Metabologia</i> , 2008 , 52, 1350-5 A Kir6.2 mutation causing severe functional effects in vitro produces neonatal diabetes without the expected neurological complications. <i>Diabetologia</i> , 2008 , 51, 802-10 Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the young. <i>Diabetologia</i> , 2008 , 51, 546-53 A family with a novel TSH receptor activating germline mutation (p.Ala485Val). <i>European Journal of</i>	0.9	2991625311

131	Extreme phenotypic diversity and nonpenetrance in families with the LMNA gene mutation R644C. <i>American Journal of Medical Genetics, Part A</i> , 2008 , 146A, 1530-42	2.5	82
130	Successful discontinuation of insulin treatment after gestational diabetes is shown to be a case of MODY due to a glucokinase mutation. <i>Open Medicine (Poland)</i> , 2008 , 3, 225-228	2.2	
129	Mutations in the MESP2 gene cause spondylothoracic dysostosis/Jarcho-Levin syndrome. <i>American Journal of Human Genetics</i> , 2008 , 82, 1334-41	11	64
128	Hepatocyte nuclear factor-1beta gene deletionsa common cause of renal disease. <i>Nephrology Dialysis Transplantation</i> , 2008 , 23, 627-35	4.3	79
127	Identification of mutations in the Kir6.2 subunit of the K(ATP) channel. <i>Methods in Molecular Biology</i> , 2008 , 491, 235-45	1.4	1
126	Development of a quantitative real-time polymerase chain reaction assay for the detection of the JAK2 V617F mutation. <i>Journal of Molecular Diagnostics</i> , 2007 , 9, 42-6	5.1	18
125	Macrosomia and hyperinsulinaemic hypoglycaemia in patients with heterozygous mutations in the HNF4A gene. <i>PLoS Medicine</i> , 2007 , 4, e118	11.6	279
124	Three novel mutations in KIF21A highlight the importance of the third coiled-coil stalk domain in the etiology of CFEOM1. <i>BMC Genetics</i> , 2007 , 8, 26	2.6	40
123	PatientsMunderstanding of genetic susceptibility testing in mainstream medicine: qualitative study on thrombophilia. <i>BMC Health Services Research</i> , 2007 , 7, 82	2.9	24
122	Mutations in HHEX are not a common cause of monogenic forms of beta cell dysfunction. <i>Diabetologia</i> , 2007 , 50, 2019-2022	10.3	3
121	Partial and whole gene deletion mutations of the GCK and HNF1A genes in maturity-onset diabetes of the young. <i>Diabetologia</i> , 2007 , 50, 2313-7	10.3	54
120	Autosomal dominant inheritance of non-syndromic renal hypoplasia and dysplasia: dramatic variation in clinical severity in a single kindred. <i>Nephrology Dialysis Transplantation</i> , 2007 , 22, 259-63	4.3	11
119	Mutations in ATP-sensitive K+ channel genes cause transient neonatal diabetes and permanent diabetes in childhood or adulthood. <i>Diabetes</i> , 2007 , 56, 1930-7	0.9	273
118	Origin of de novo KCNJ11 mutations and risk of neonatal diabetes for subsequent siblings. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2007 , 92, 1773-7	5.6	46
117	Increased ATPase activity produced by mutations at arginine-1380 in nucleotide-binding domain 2 of ABCC8 causes neonatal diabetes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 18988-92	11.5	47
116	Renal cysts and diabetes due to a heterozygous HNF-1beta gene deletion. <i>Nephrology Dialysis Transplantation</i> , 2007 , 22, 1271-2	4.3	3
115	Prevalence of permanent neonatal diabetes in Slovakia and successful replacement of insulin with sulfonylurea therapy in KCNJ11 and ABCC8 mutation carriers. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2007 , 92, 1276-82	5.6	82
114	Insulin gene mutations as a cause of permanent neonatal diabetes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 15040-4	11.5	426

(2006-2007)

natal diabetes caused by dominant, recessive, or compound heterozygous SUR1	1.5 11	24 161
	11	161
ant in the FTO gene is associated with body mass index and predisposes to adult obesity. <i>Science</i> , 2007 , 316, 889-94	33.3	3294
enome-wide association signals in UK samples reveals risk loci for type 2 diabetes. 16, 1336-41	33.3	1823
CNJ11, which encodes Kir6.2, are a common cause of diabetes diagnosed in the first e, with the phenotype determined by genotype. <i>Diabetologia</i> , 2006 , 49, 1190-7	10.3	190
	4.7	93
e genes encoding the transcription factors hepatocyte nuclear factor 1 alpha alpha (HNF4A) in maturity-onset diabetes of the young. <i>Human Mutation</i> , 2006 , 27, 854-69	4 .7	137
	5.6	175
	4	19
	6.2	8
	0.9	56
	0.9	92
	5.8	236
	4.4	11
	5.1	22
and define the relationship between mutation position and clinical phenotype in	5.6	100
	e genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) C8) in diabetes mellitus and hyperinsulinism. <i>Human Mutation</i> , 2006 , 27, 220-31 e genes encoding the transcription factors hepatocyte nuclear factor 1 alpha alpha (HNF4A) in maturity-onset diabetes of the young. <i>Human Mutation</i> , 2006 , 27, 854-6 activating mutation in the sulphonylurea receptor SUR1 (ABCC8) causes neonatal an <i>Molecular Genetics</i> , 2006 , 15, 1793-800 metic aetiology of monogenic diabetes can improve treatment. <i>Expert Opinion on py</i> , 2006 , 7, 1759-67 Itiple endocrine neoplasia type 2B, without endocrinopathy or RET gene mutation: management. <i>Thyroid</i> , 2006 , 16, 605-8 e same residue (R50) of Kir6.2 (KCNJ11) that cause neonatal diabetes produce onal effects. <i>Diabetes</i> , 2006 , 55, 1705-12 g supports a nonautoimmune etiology in patients diagnosed with diabetes under inths. <i>Diabetes</i> , 2006 , 55, 1895-8 repatocyte nuclear factor-1beta and their related phenotypes. <i>Journal of Medical</i> 43, 84-90 rany occur with a primer binding site polymorphism for the commonly used RFLP 131T>C polymorphism of the Apolipoprotein AV gene. <i>Lipids in Health and Disease</i> , tive real-time polymerase chain reaction method for detection and quantification of hondrial point mutation. <i>Journal of Molecular Diagnostics</i> , 2006 , 8, 225-30 TCF1 gene encoding hepatocyte nuclear factor-1 alpha show differential expression	e genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) C8) in diabetes mellitus and hyperinsulinism. Human Mutation, 2006, 27, 220-31 47 e genes encoding the transcription factors hepatocyte nuclear factor 1 alpha alpha (HNF4A) in maturity-onset diabetes of the young. Human Mutation, 2006, 27, 854-69-7 stactivating mutation in the sulphonylurea receptor SUR1 (ABCC8) causes neonatal in Molecular Genetics, 2006, 15, 1793-800 5.6 metic aetiology of monogenic diabetes can improve treatment. Expert Opinion on py, 2006, 7, 1759-67 4 ltiple endocrine neoplasia type 2B, without endocrinopathy or RET gene mutation: management. Thyroid, 2006, 16, 605-8 e same residue (R50) of Kir6.2 (KCNJ11) that cause neonatal diabetes produce onal effects. Diabetes, 2006, 55, 1705-12 g supports a nonautoimmune etiology in patients diagnosed with diabetes under onths. Diabetes, 2006, 55, 1895-8 spatocyte nuclear factor-1beta and their related phenotypes. Journal of Medical 43, 84-90 spatocyte nuclear factor-1beta and their related phenotypes. Journal of Medical 43, 84-90 spatocyte nuclear factor-1beta and their related phenotypes. Journal of Medical 43, 84-90 spatocyte nuclear factor-1beta and their related phenotypes. Journal of Medical 43, 84-90 spatocyte nuclear factor-1beta and their related phenotypes. Journal of Medical 43, 84-90 spatocyte nuclear factor-1beta and their related phenotypes. Journal of Medical 43, 84-90 spatocyte nuclear factor-1beta and their related phenotypes. Journal of Medical 43, 84-90 spatocyte nuclear factor-1beta and their related phenotypes. Journal of Medical 43, 84-90 spatocyte nuclear factor-1beta and their related phenotypes. Journal of Medical 43, 84-90 spatocyte nuclear factor-1beta and their related phenotypes. Journal of Medical 43, 84-90 spatocyte nuclear factor-1beta and their related phenotypes. Journal of Medical 43, 84-90 spatocyte nuclear factor-1beta and their related phenotypes. Journal of Medical 43, 84-90

95	Asian MODY: are we missing an important diagnosis?. <i>Diabetic Medicine</i> , 2006 , 23, 1257-60	3.5	17
94	Hepatocyte nuclear factor-1 beta mutations cause neonatal diabetes and intrauterine growth retardation: support for a critical role of HNF-1beta in human pancreatic development. <i>Diabetic Medicine</i> , 2006 , 23, 1301-6	3.5	123
93	KCNJ11 activating mutations are associated with developmental delay, epilepsy and neonatal diabetes syndrome and other neurological features. <i>European Journal of Human Genetics</i> , 2006 , 14, 824	-∄6³	110
92	Permanent neonatal diabetes in an Asian infant. <i>Journal of Pediatrics</i> , 2005 , 146, 131-3	3.6	48
91	Detection of an MEN1 gene mutation depends on clinical features and supports current referral criteria for diagnostic molecular genetic testing. <i>Clinical Endocrinology</i> , 2005 , 62, 169-75	3.4	79
90	The identification of a R201H mutation in KCNJ11, which encodes Kir6.2, and successful transfer to sustained-release sulphonylurea therapy in a subject with neonatal diabetes: evidence for heterogeneity of beta cell function among carriers of the R201H mutation. <i>Diabetologia</i> , 2005 , 48, 1029	10.3 9-31	69
89	Molecular genetics and phenotypic characteristics of MODY caused by hepatocyte nuclear factor 4alpha mutations in a large European collection. <i>Diabetologia</i> , 2005 , 48, 878-85	10.3	170
88	The position of premature termination codons in the hepatocyte nuclear factor -1 beta gene determines susceptibility to nonsense-mediated decay. <i>Human Genetics</i> , 2005 , 118, 214-24	6.3	42
87	Neonatal diabetes is more than just a paediatric problem: 57 years of diabetes from a Kir6.2 mutation. <i>Practical Diabetes International: the International Journal for Diabetes Care Teams Worldwide</i> , 2005 , 22, 342-344		2
86	Relapsing diabetes can result from moderately activating mutations in KCNJ11. <i>Human Molecular Genetics</i> , 2005 , 14, 925-34	5.6	165
85	High-dose glibenclamide can replace insulin therapy despite transitory diarrhea in early-onset diabetes caused by a novel R201L Kir6.2 mutation. <i>Diabetes Care</i> , 2005 , 28, 758-9	14.6	75
84	Insights into the structure and regulation of glucokinase from a novel mutation (V62M), which causes maturity-onset diabetes of the young. <i>Journal of Biological Chemistry</i> , 2005 , 280, 14105-13	5.4	76
83	Beta-cell dysfunction, insulin sensitivity, and glycosuria precede diabetes in hepatocyte nuclear factor-1alpha mutation carriers. <i>Diabetes Care</i> , 2005 , 28, 1751-6	14.6	89
82	Genetic testing for glucokinase mutations in clinically selected patients with MODY: a worthwhile investment. <i>Swiss Medical Weekly</i> , 2005 , 135, 352-6	3.1	26
81	Multiple endocrine neoplasia types 1 and 2. <i>Methods in Molecular Medicine</i> , 2004 , 92, 267-83		3
80	Activating mutations in the KCNJ11 gene encoding the ATP-sensitive K+ channel subunit Kir6.2 are rare in clinically defined type 1 diabetes diagnosed before 2 years. <i>Diabetes</i> , 2004 , 53, 2998-3001	0.9	46
79	Mesangiocapillary glomerulonephritis type 2 associated with familial partial lipodystrophy (Dunnigan-Kobberling syndrome). <i>Nephron Clinical Practice</i> , 2004 , 96, c35-8		17
78	Permanent neonatal diabetes due to paternal germline mosaicism for an activating mutation of the KCNJ11 Gene encoding the Kir6.2 subunit of the beta-cell potassium adenosine triphosphate channel. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2004 , 89, 3932-5	5.6	82

(2003-2004)

77	Messenger RNA transcripts of the hepatocyte nuclear factor-1alpha gene containing premature termination codons are subject to nonsense-mediated decay. <i>Diabetes</i> , 2004 , 53, 500-4	0.9	44
76	Contrasting diabetes phenotypes associated with hepatocyte nuclear factor-1alpha and -1beta mutations. <i>Diabetes Care</i> , 2004 , 27, 1102-7	14.6	99
75	Premature birth and low birth weight associated with nonautoimmune hyperthyroidism due to an activating thyrotropin receptor gene mutation. <i>Clinical Endocrinology</i> , 2004 , 60, 711-8	3.4	41
74	Abnormal splicing of hepatocyte nuclear factor-1 beta in the renal cysts and diabetes syndrome. <i>Diabetologia</i> , 2004 , 47, 937-42	10.3	30
73	Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. <i>New England Journal of Medicine</i> , 2004 , 350, 1838-49	59.2	930
72	Mutated MESP2 causes spondylocostal dysostosis in humans. <i>American Journal of Human Genetics</i> , 2004 , 74, 1249-54	11	124
71	40 EASD Annual Meeting of the European Association for the Study of Diabetes : Munich, Germany, 5-9 September 2004. <i>Diabetologia</i> , 2004 , 47, A1-A464	10.3	34
70	Etiological investigation of diabetes in young adults presenting with apparent type 2 diabetes. <i>Diabetes Care</i> , 2003 , 26, 2088-93	14.6	50
69	Apolipoprotein-e influences aspects of intellectual ability in type 1 diabetes. <i>Diabetes</i> , 2003 , 52, 145-8	0.9	19
68	A genome-wide scan in families with maturity-onset diabetes of the young: evidence for further genetic heterogeneity. <i>Diabetes</i> , 2003 , 52, 872-81	0.9	55
67	Novel mutations in X-linked dominant chondrodysplasia punctata (CDPX2). <i>Journal of Investigative Dermatology</i> , 2003 , 121, 939-42	4.3	14
66	Atypical familial juvenile hyperuricemic nephropathy associated with a hepatocyte nuclear factor-1beta gene mutation. <i>Kidney International</i> , 2003 , 63, 1645-51	9.9	120
65	Response to treatment with rosiglitazone in familial partial lipodystrophy due to a mutation in the LMNA gene. <i>Diabetic Medicine</i> , 2003 , 20, 823-7	3.5	53
64	Molecular genetic prenatal diagnosis for a case of autosomal recessive spondylocostal dysostosis. <i>Prenatal Diagnosis</i> , 2003 , 23, 575-9	3.2	10
63	No deterioration in glycemic control in HNF-1alpha maturity-onset diabetes of the young following transfer from long-term insulin to sulphonylureas. <i>Diabetes Care</i> , 2003 , 26, 3191-2	14.6	98
62	Insights into the biochemical and genetic basis of glucokinase activation from naturally occurring hypoglycemia mutations. <i>Diabetes</i> , 2003 , 52, 2433-40	0.9	133
61	Identifying hepatic nuclear factor 1alpha mutations in children and young adults with a clinical diagnosis of type 1 diabetes. <i>Diabetes Care</i> , 2003 , 26, 333-7	14.6	74
60	Distinct molecular and morphogenetic properties of mutations in the human HNF1beta gene that lead to defective kidney development. <i>Journal of the American Society of Nephrology: JASN</i> , 2003 , 14, 2033-41	12.7	68

59	Severe hyperglycemia after renal transplantation in a pediatric patient with a mutation of the hepatocyte nuclear factor-1beta gene. <i>American Journal of Kidney Diseases</i> , 2002 , 40, 1325-30	7.4	17
58	Solitary functioning kidney and diverse genital tract malformations associated with hepatocyte nuclear factor-1beta mutations. <i>Kidney International</i> , 2002 , 61, 1243-51	9.9	104
57	Heterogeneity in young adult onset diabetes: aetiology alters clinical characteristics. <i>Diabetic Medicine</i> , 2002 , 19, 758-61	3.5	38
56	Abnormal splicing of hepatocyte nuclear factor 1 alpha in maturity-onset diabetes of the young. <i>Diabetologia</i> , 2002 , 45, 1463-7	10.3	19
55	Evidence for haploinsufficiency of the human HNF1alpha gene revealed by functional characterization of MODY3-associated mutations. <i>Biological Chemistry</i> , 2002 , 383, 1691-700	4.5	23
54	Maturity-onset diabetes of the young caused by a balanced translocation where the 20q12 break point results in disruption upstream of the coding region of hepatocyte nuclear factor-4alpha (HNF4A) gene. <i>Diabetes</i> , 2002 , 51, 2329-33	0.9	25
53	Frequent occurrence of an intron 4 mutation in multiple endocrine neoplasia type 1. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2002 , 87, 2688-93	5.6	47
52	Intrauterine hyperglycemia is associated with an earlier diagnosis of diabetes in HNF-1alpha gene mutation carriers. <i>Diabetes Care</i> , 2002 , 25, 2287-91	14.6	84
51	Predictive genetic testing in maturity-onset diabetes of the young (MODY). <i>Diabetic Medicine</i> , 2001 , 18, 417-21	3.5	49
50	Glucokinase mutations in a phenotypically selected multiethnic group of women with a history of gestational diabetes. <i>Diabetic Medicine</i> , 2001 , 18, 683-4	3.5	28
49	Maturity onset diabetes of the young (MODY) and early onset Type II diabetes are not caused by loss of imprinting at the transient neonatal diabetes (TNDM) locus. <i>Diabetologia</i> , 2001 , 44, 924	10.3	5
48	The generalized aminoaciduria seen in patients with hepatocyte nuclear factor-1alpha mutations is a feature of all patients with diabetes and is associated with glucosuria. <i>Diabetes</i> , 2001 , 50, 2047-52	0.9	50
47	ACE gene polymorphism as a prognostic indicator in patients with type 2 diabetes and established renal disease. <i>Diabetes Care</i> , 2001 , 24, 2115-20	14.6	29
46	Mutations in the hepatocyte nuclear factor-1beta gene are associated with familial hypoplastic glomerulocystic kidney disease. <i>American Journal of Human Genetics</i> , 2001 , 68, 219-24	11	227
45	Studies of association between the gene for calpain-10 and type 2 diabetes mellitus in the United Kingdom. <i>American Journal of Human Genetics</i> , 2001 , 69, 544-52	11	154
44	Hepatocyte nuclear factor-1beta: a new kindred with renal cysts and diabetes and gene expression in normal human development. <i>Journal of the American Society of Nephrology: JASN</i> , 2001 , 12, 2175-21	80 ^{2.7}	84
43	Proposed mechanism for a novel insertion/deletion frameshift mutation (I414G415ATCG>CCA) in the hepatocyte nuclear factor 1 alpha (HNF-1 alpha) gene which causes maturity-onset diabetes of the young (MODY). <i>Human Mutation</i> , 2000 , 16, 273	4.7	8
42	Hepatocyte nuclear factor 1 alpha (HNF-1 alpha) mutations in maturity-onset diabetes of the young. <i>Human Mutation</i> , 2000 , 16, 377-85	4.7	97

(1998-2000)

41	Abnormal nephron development associated with a frameshift mutation in the transcription factor hepatocyte nuclear factor-1 beta. <i>Kidney International</i> , 2000 , 57, 898-907	9.9	132
40	Mutations in the human delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. <i>Nature Genetics</i> , 2000 , 24, 438-41	36.3	308
39	R127W in HNF4alpha is a loss-of-function mutation causing maturity-onset diabetes of the young (MODY) in a UK Caucasian family. <i>Diabetologia</i> , 2000 , 43, 1203	10.3	4
38	A high prevalence of glucokinase mutations in gestational diabetic subjects selected by clinical criteria. <i>Diabetologia</i> , 2000 , 43, 250-3	10.3	158
37	Confirmation of linkage of DuaneMsyndrome and refinement of the disease locus to an 8.8-cM interval on chromosome 2q31. <i>Human Genetics</i> , 2000 , 106, 636-638	6.3	11
36	The mutated human gene encoding hepatocyte nuclear factor 1beta inhibits kidney formation in developing Xenopus embryos. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2000 , 97, 4695-700	11.5	69
35	No evidence for linkage at candidate type 2 diabetes susceptibility loci on chromosomes 12 and 20 in United Kingdom Caucasians. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2000 , 85, 853-7	5.6	15
34	A severe clinical phenotype results from the co-inheritance of type 2 susceptibility genes and a hepatocyte nuclear factor-1alpha mutation. <i>Diabetes Care</i> , 2000 , 23, 424-5	14.6	12
33	Confirmation of linkage of DuaneMsyndrome and refinement of the disease locus to an 8.8-cM interval on chromosome 2q31. <i>Human Genetics</i> , 2000 , 106, 636-8	6.3	50
32	Parent-offspring trios: a resource to facilitate the identification of type 2 diabetes genes. <i>Diabetes</i> , 1999 , 48, 2475-9	0.9	39
31	Non-penetrance in a MODY 3 family with a mutation in the hepatic nuclear factor 1alpha gene: implications for predictive testing. <i>European Journal of Human Genetics</i> , 1999 , 7, 729-32	5.3	12
30	Allelic drop-out in exon 2 of the hepatocyte nuclear factor-1alpha gene hinders the identification of mutations in three families with maturity-onset diabetes of the young. <i>Diabetes</i> , 1999 , 48, 921-3	0.9	26
29	A gene for autosomal recessive spondylocostal dysostosis maps to 19q13.1-q13.3. <i>American Journal of Human Genetics</i> , 1999 , 65, 175-82	11	65
28	Missense mutations in the insulin promoter factor-1 gene predispose to type 2 diabetes. <i>Journal of Clinical Investigation</i> , 1999 , 104, R33-9	15.9	176
27	Mutations in the glucokinase gene of the fetus result in reduced birth weight. <i>Nature Genetics</i> , 1998 , 19, 268-70	36.3	483
26	Haemochromatosis and type 2 diabetes. <i>Lancet, The</i> , 1998 , 352, 1068	40	1
25	C282Y mutation in HFE (haemochromatosis) gene and type 2 diabetes. <i>Lancet, The</i> , 1998 , 351, 1933-4	40	53
24	Genetic testing for maturity onset diabetes of the young in childhood hyperglycaemia. <i>Archives of Disease in Childhood</i> , 1998 , 78, 552-4	2.2	10

23	Mutations in hepatocyte nuclear factor 1beta are not a common cause of maturity-onset diabetes of the young in the U.K. <i>Diabetes</i> , 1998 , 47, 1152-4	0.9	46
22	A rapid screening method for hepatocyte nuclear factor 1 alpha frameshift mutations; prevalence in maturity-onset diabetes of the young and late-onset non-insulin dependent diabetes. <i>Human Genetics</i> , 1997 , 101, 351-4	6.3	26
21	A missense mutation in the hepatocyte nuclear factor 4 alpha gene in a UK pedigree with maturity-onset diabetes of the young. <i>Diabetologia</i> , 1997 , 40, 859-62	10.3	55
20	Biomonitoring study of a group of workers potentially exposed to traffic fumes. <i>Environmental and Molecular Mutagenesis</i> , 1997 , 30, 119-30	3.2	12
19	A comparison of conventional metaphase analysis of Giemsa-stained chromosomes with multi-colour fluorescence in situ hybridization analysis to detect chromosome aberrations induced by daunomycin. <i>Mutagenesis</i> , 1996 , 11, 537-46	2.8	11
18	An investigation into the activation and deactivation of chlorinated hydrocarbons to genotoxins in metabolically competent human cells. <i>Mutagenesis</i> , 1996 , 11, 247-74	2.8	39
17	A genetically engineered V79 cell line SD1 expressing rat CYP2B1 exhibits chromosomal instability at the integration site of the transfected DNA. <i>Mutagenesis</i> , 1995 , 10, 549-54	2.8	3
16	Use of multicolour chromosome painting to identify chromosomal rearrangements in human lymphocytes exposed to bleomycin: a comparison with conventional cytogenetic analysis of Giemsa-stained chromosomes. <i>Environmental and Molecular Mutagenesis</i> , 1995 , 26, 44-54	3.2	25
15	Micronucleus assays using cytochalasin-blocked MCL-5 cells, a proprietary human cell line expressing five human cytochromes P-450 and microsomal epoxide hydrolase. <i>Mutagenesis</i> , 1993 , 8, 363-72	2.8	71
14	Cellular and chromosomal hypersensitivity to DNA crosslinking agents and topoisomerase inhibitors in the radiosensitive Chinese hamster irs mutants: phenotypic similarities to ataxia telangiectasia and Fanconilanaemia cells. <i>Carcinogenesis</i> , 1993 , 14, 2487-94	4.6	52
13	Induction of micronuclei in V79 Chinese hamster cells by hydroquinone and econazole nitrate. <i>Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis</i> , 1993 , 287, 87-91	3.3	7
12	A comparative study of the use of primary Chinese hamster liver cultures and genetically engineered immortal V79 Chinese hamster cell lines expressing rat liver CYP1A1, 1A2 and 2B1 cDNAs in micronucleus assays. <i>Toxicology</i> , 1993 , 82, 131-49	4.4	17
11	A modified protocol for the cytochalasin B in vitro micronucleus assay using whole human blood or separated lymphocyte cultures. <i>Mutagenesis</i> , 1993 , 8, 317-20	2.8	32
10	Increased sterigmatocystin-induced mutation frequency in Saccharomyces cerevisiae expressing cytochrome P450 CYP2B1. <i>Biochemical Pharmacology</i> , 1992 , 43, 374-6	6	6
9	The use of genetically engineered V79 Chinese hamster cultures expressing rat liver CYP1A1, 1A2 and 2B1 cDNAs in micronucleus assays. <i>Mutagenesis</i> , 1991 , 6, 461-70	2.8	66
8	The expression of cytochrome P450IIB1 in Saccharomyces cerevisiae results in an increased mutation frequency when exposed to cyclophosphamide. <i>Carcinogenesis</i> , 1989 , 10, 2139-43	4.6	24
7	Genomic variant sharing: a position statement. Wellcome Open Research,4, 22	4.8	5
6	Misannotation of multiple-nucleotide variants risks misdiagnosis. Wellcome Open Research,4, 145	4.8	3

LIST OF PUBLICATIONS

5	Congenital hyperinsulinism and evolution to sulfonylurea-responsive diabetes later in life due to a novel homozygous p.L171F ABCC8 mutation. <i>JCRPE Journal of Clinical Research in Pediatric Endocrinology</i> ,	1.9	2	
4	Using structural analysis in silico to assess the impact of missense variants in MEN1		1	
3	Functional interpretation of ATAD3A variants in neuro-mitochondrial phenotypes		1	
2	SavvyCNV: genome-wide CNV calling from off-target reads		8	
1	An enhanced method for targeted next generation sequencing copy number variant detection using ExomeDepth. Wellcome Open Research, 2, 49	4.8	1	