Vellareddy Anantharam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6041698/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitochondrial impairment in microglia amplifies NLRP3 inflammasome proinflammatory signaling in cell culture and animal models of Parkinson's disease. Npj Parkinson's Disease, 2017, 3, 30.	2.5	189
2	Fyn kinase regulates misfolded α-synuclein uptake and NLRP3 inflammasome activation in microglia. Journal of Experimental Medicine, 2019, 216, 1411-1430.	4.2	169
3	Manganese-Induced Neurotoxicity: New Insights Into the Triad of Protein Misfolding, Mitochondrial Impairment, and Neuroinflammation. Frontiers in Neuroscience, 2019, 13, 654.	1.4	167
4	Protein Kinase Cδ Is a Key Downstream Mediator of Manganese-Induced Apoptosis in Dopaminergic Neuronal Cells. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 46-55.	1.3	143
5	α-Synuclein Negatively Regulates Protein Kinase CδExpression to Suppress Apoptosis in Dopaminergic Neurons by Reducing p300 Histone Acetyltransferase Activity. Journal of Neuroscience, 2011, 31, 2035-2051.	1.7	136
6	Fyn Kinase Regulates Microglial Neuroinflammatory Responses in Cell Culture and Animal Models of Parkinson's Disease. Journal of Neuroscience, 2015, 35, 10058-10077.	1.7	136
7	Manganese promotes the aggregation and prion-like cell-to-cell exosomal transmission of α-synuclein. Science Signaling, 2019, 12, .	1.6	129
8	Mito-Apocynin Prevents Mitochondrial Dysfunction, Microglial Activation, Oxidative Damage, and Progressive Neurodegeneration in MitoPark Transgenic Mice. Antioxidants and Redox Signaling, 2017, 27, 1048-1066.	2.5	107
9	Manganese exposure induces neuroinflammation by impairing mitochondrial dynamics in astrocytes. NeuroToxicology, 2018, 64, 204-218.	1.4	106
10	Manganese activates NLRP3 inflammasome signaling and propagates exosomal release of ASC in microglial cells. Science Signaling, 2019, 12, .	1.6	103
11	Anti-inflammatory and neuroprotective effects of an orally active apocynin derivative in pre-clinical models of Parkinson's disease. Journal of Neuroinflammation, 2012, 9, 241.	3.1	98
12	α‧ynuclein Realâ€Time Quakingâ€Induced Conversion in the Submandibular Clands of Parkinson's Disease Patients. Movement Disorders, 2020, 35, 268-278.	2.2	98
13	Mitoapocynin Treatment Protects Against Neuroinflammation and Dopaminergic Neurodegeneration in a Preclinical Animal Model of Parkinson's Disease. Journal of NeuroImmune Pharmacology, 2016, 11, 259-278.	2.1	93
14	Protein Kinase CÂ Negatively Regulates Tyrosine Hydroxylase Activity and Dopamine Synthesis by Enhancing Protein Phosphatase-2A Activity in Dopaminergic Neurons. Journal of Neuroscience, 2007, 27, 5349-5362.	1.7	92
15	Blinded <scp>RTâ€QuIC</scp> Analysis of <scp>αâ€&ynuclein</scp> Biomarker in Skin Tissue From Parkinson's Disease Patients. Movement Disorders, 2020, 35, 2230-2239.	2.2	88
16	α-Synuclein Protects Against Manganese Neurotoxic Insult During the Early Stages of Exposure in a Dopaminergic Cell Model of Parkinson's Disease. Toxicological Sciences, 2015, 143, 454-468.	1.4	84
17	A simple magnetic separation method for high-yield isolation of pure primary microglia. Journal of Neuroscience Methods, 2011, 194, 287-296.	1.3	83
18	Organophosphate pesticide chlorpyrifos impairs STAT1 signaling to induce dopaminergic neurotoxicity: Implications for mitochondria mediated oxidative stress signaling events. Neurobiology of Disease, 2018, 117, 82-113.	2.1	83

#	Article	IF	CITATIONS
19	Protein kinase Cδ upregulation in microglia drives neuroinflammatory responses and dopaminergic neurodegeneration in experimental models of Parkinson's disease. Neurobiology of Disease, 2016, 93, 96-114.	2.1	82
20	Neuronal protection against oxidative insult by polyanhydride nanoparticle-based mitochondria-targeted antioxidant therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 809-820.	1.7	80
21	Prokineticin-2 upregulation during neuronal injury mediates a compensatory protective response against dopaminergic neuronal degeneration. Nature Communications, 2016, 7, 12932.	5.8	75
22	Environmental neurotoxicant manganese regulates exosome-mediated extracellular miRNAs in cell culture model of Parkinson's disease: Relevance to α-synuclein misfolding in metal neurotoxicity. NeuroToxicology, 2018, 64, 267-277.	1.4	71
23	The Peptidyl-prolyl Isomerase Pin1 Up-regulation and Proapoptotic Function in Dopaminergic Neurons. Journal of Biological Chemistry, 2013, 288, 21955-21971.	1.6	68
24	Proteolytic activation of proapoptotic kinase protein kinase Cδ by tumor necrosis factor α death receptor signaling in dopaminergic neurons during neuroinflammation. Journal of Neuroinflammation, 2012, 9, 82.	3.1	66
25	Involvement of c-Abl Kinase in Microglial Activation of NLRP3 Inflammasome and Impairment in Autolysosomal System. Journal of NeuroImmune Pharmacology, 2017, 12, 624-660.	2.1	65
26	Histone Hyperacetylation Up-regulates Protein Kinase Cδ in Dopaminergic Neurons to Induce Cell Death. Journal of Biological Chemistry, 2014, 289, 34743-34767.	1.6	62
27	Alterations in mitochondrial dynamics induced by tebufenpyrad and pyridaben in a dopaminergic neuronal cell culture model. NeuroToxicology, 2016, 53, 302-313.	1.4	56
28	Kv1.3 modulates neuroinflammation and neurodegeneration in Parkinson's disease. Journal of Clinical Investigation, 2020, 130, 4195-4212.	3.9	50
29	Role of neurotoxicants and traumatic brain injury in α-synuclein protein misfolding and aggregation. Brain Research Bulletin, 2017, 133, 60-70.	1.4	47
30	Vanadium exposure induces olfactory dysfunction in an animal model of metal neurotoxicity. NeuroToxicology, 2014, 43, 73-81.	1.4	40
31	Opposing roles of prion protein in oxidative stress- and ER stress-induced apoptotic signaling. Free Radical Biology and Medicine, 2008, 45, 1530-1541.	1.3	36
32	MitoPark transgenic mouse model recapitulates the gastrointestinal dysfunction and gut-microbiome changes of Parkinson's disease. NeuroToxicology, 2019, 75, 186-199.	1.4	29
33	Role of proteolytic activation of protein kinase Cδ in the pathogenesis of prion disease. Prion, 2014, 8, 143-153.	0.9	26
34	Integrated Organotypic Slice Cultures and RT-QuIC (OSCAR) Assay: Implications for Translational Discovery in Protein Misfolding Diseases. Scientific Reports, 2017, 7, 43155.	1.6	25
35	Characterization and comparative analysis of a new mouse microglial cell model for studying neuroinflammatory mechanisms during neurotoxic insults. NeuroToxicology, 2018, 67, 129-140.	1.4	25
36	Molecular cloning, epigenetic regulation, and functional characterization of <i>Prkd1</i> gene promoter in dopaminergic cell culture models of Parkinson's disease. Journal of Neurochemistry, 2015, 135, 402-415.	2.1	24

#	Article	IF	CITATIONS
37	Enhanced differentiation of human dopaminergic neuronal cell model for preclinical translational research in Parkinson's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165533.	1.8	20
38	Rapid and Refined CD11b Magnetic Isolation of Primary Microglia with Enhanced Purity and Versatility. Journal of Visualized Experiments, 2017, , .	0.2	19
39	Exosomes as Mediators of Chemical-Induced Toxicity. Current Environmental Health Reports, 2019, 6, 73-79.	3.2	17
40	Mechanistic Insights Into Gut Microbiome Dysbiosis-Mediated Neuroimmune Dysregulation and Protein Misfolding and Clearance in the Pathogenesis of Chronic Neurodegenerative Disorders. Frontiers in Neuroscience, 2022, 16, 836605.	1.4	17
41	Utilization of the CRISPR-Cas9 Gene Editing System to Dissect Neuroinflammatory and Neuropharmacological Mechanisms in Parkinson's Disease. Journal of NeuroImmune Pharmacology, 2019, 14, 595-607.	2.1	16
42	Tumor Necrosis Factor-Like Weak Inducer of Apoptosis (TWEAK) Enhances Activation of STAT3/NLRC4 Inflammasome Signaling Axis through PKCδ in Astrocytes: Implications for Parkinson's Disease. Cells, 2020, 9, 1831.	1.8	16
43	PKC Delta Activation Promotes Endoplasmic Reticulum Stress (ERS) and NLR Family Pyrin Domain-Containing 3 (NLRP3) Inflammasome Activation Subsequent to Asynuclein-Induced Microglial Activation: Involvement of Thioredoxin-Interacting Protein (TXNIP)/Thioredoxin (Trx) Redoxisome Pathway, Frontiers in Aging Neuroscience, 2021, 13, 661505.	1.7	14
44	Neurotoxicity of Vanadium. Advances in Neurobiology, 2017, 18, 287-301.	1.3	13
45	An Ex Vivo Brain Slice Culture Model of Chronic Wasting Disease: Implications for Disease Pathogenesis and Therapeutic Development. Scientific Reports, 2020, 10, 7640.	1.6	11
46	Environmental neurotoxic pesticide exposure induces gut inflammation and enteric neuronal degeneration by impairing enteric glial mitochondrial function in pesticide models of Parkinson's disease: Potential relevance to gut-brain axis inflammation in Parkinson's disease pathogenesis. International Journal of Biochemistry and Cell Biology, 2022, 147, 106225.	1.2	11
47	Clostridioides difficile Infection Dysregulates Brain Dopamine Metabolism. Microbiology Spectrum, 2022, 10, e0007322.	1.2	10
48	Fyn Kinase-Mediated PKCδY311 Phosphorylation Induces Dopaminergic Degeneration in Cell Culture and Animal Models: Implications for the Identification of a New Pharmacological Target for Parkinson's Disease. Frontiers in Pharmacology, 2021, 12, 631375.	1.6	4
49	Emerging Microbiome Genetic Engineering Technology for Stable Levodopa Delivery in Parkinson's Disease. FASEB Journal, 2022, 36,	0.2	3
50	Nanotechnology-mediated therapeutic strategies against synucleinopathies in neurodegenerative disease. Current Opinion in Chemical Engineering, 2021, 31, 100673.	3.8	2