Jonas Obleser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6041552/publications.pdf

Version: 2024-02-01

41344 64796 8,664 144 49 79 citations h-index g-index papers 191 191 191 5269 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Attentional sampling of visual and auditory objects is captured by thetaâ€modulated neural activity. European Journal of Neuroscience, 2022, 55, 3067-3082.	2.6	22
2	What auditory cortex is waiting for. Nature Human Behaviour, 2022, , .	12.0	0
3	Endogenous modulation of delta phase by expectation–A replication of Stefanics etÂal., 2010. Cortex, 2022, 149, 226-245.	2.4	15
4	A Parsimonious Look at Neural Oscillations in Speech Perception. Springer Handbook of Auditory Research, 2022, , 81-111.	0.7	2
5	Distributed networks for auditory memory differentially contribute to recall precision. NeuroImage, 2022, 256, 119227.	4.2	4
6	Ten simple rules to study distractor suppression. Progress in Neurobiology, 2022, 213, 102269.	5.7	31
7	Implicit Versus Explicit Timing—Separate or Shared Mechanisms?. Journal of Cognitive Neuroscience, 2022, 34, 1447-1466.	2.3	4
8	Age-related differences in the neural network interactions underlying the predictability gain. Cortex, 2022, 154, 269-286.	2.4	2
9	Neural modelling of the semantic predictability gain under challenging listening conditions. Human Brain Mapping, 2021, 42, 110-127.	3.6	13
10	Unilateral Acoustic Degradation Delays Attentional Separation of Competing Speech. Trends in Hearing, 2021, 25, 233121652110132.	1.3	11
11	Orienting auditory attention in time: Lateralized alpha power reflects spatio-temporal filtering. Neurolmage, 2021, 228, 117711.	4.2	11
12	Behavior needs neural variability. Neuron, 2021, 109, 751-766.	8.1	141
13	Circadian fluctuations in glucocorticoid level predict perceptual discrimination sensitivity. IScience, 2021, 24, 102345.	4.1	10
14	Frequency-Specific Effects in Infant Electroencephalograms Do Not Require Entrained Neural Oscillations: A Commentary on Köster et al. (2019). Psychological Science, 2021, 32, 966-971.	3.3	14
15	A quiet innovator: Peter Lakatos (1972–2021). Nature Neuroscience, 2021, 24, 1191-1192.	14.8	O
16	Neural attentional-filter mechanisms of listening success in middle-aged and older individuals. Nature Communications, 2021, 12, 4533.	12.8	22
17	Familiarity and task context shape the use of acoustic information in voice identity perception. Cognition, 2021, 215, 104780.	2.2	6
18	Dynamic large-scale connectivity of intrinsic cortical oscillations supports adaptive listening in challenging conditions. PLoS Biology, 2021, 19, e3001410.	5. 6	5

#	Article	IF	Citations
19	Modality-specific tracking of attention and sensory statistics in the human electrophysiological spectral exponent. ELife, 2021, 10, .	6.0	87
20	Neural tracking in infants – An analytical tool for multisensory social processing in development. Developmental Cognitive Neuroscience, 2021, 52, 101034.	4.0	16
21	Personality captures dissociations of subjective versus objective hearing in noise. Royal Society Open Science, 2021, 8, 210881.	2.4	5
22	Predicting speech from a cortical hierarchy of event-based time scales. Science Advances, 2021, 7, eabi6070.	10.3	23
23	Does Closing the Eyes Enhance Auditory Attention? Eye Closure Increases Attentional Alpha-Power Modulation but Not Listening Performance. Journal of Cognitive Neuroscience, 2020, 32, 212-225.	2.3	22
24	The circadian phase of antenatal glucocorticoid treatment affects the risk of behavioral disorders. Nature Communications, 2020, 11, 3593.	12.8	22
25	The vulnerability of working memory to distraction is rhythmic. Neuropsychologia, 2020, 146, 107505.	1.6	9
26	Spatial Attention and Temporal Expectation Exert Differential Effects on Visual and Auditory Discrimination. Journal of Cognitive Neuroscience, 2020, 32, 1562-1576.	2.3	33
27	Aberrant Perceptual Judgments on Speech-Relevant Acoustic Features in Hallucination-Prone Individuals. Schizophrenia Bulletin Open, 2020, 1, .	1.7	6
28	Temporal selectivity declines in the aging human auditory cortex. ELife, 2020, 9, .	6.0	20
29	Coding of Spectral Information. , 2020, , 681-690.		0
30	Quantifying the individual auditory and visual brain response in 7-month-old infants watching a brief cartoon movie. Neurolmage, 2019, 202, 116060.	4.2	40
31	Neural Entrainment and Attentional Selection in the Listening Brain. Trends in Cognitive Sciences, 2019, 23, 913-926.	7.8	280
32	Alpha Oscillations in the Human Brain Implement Distractor Suppression Independent of Target Selection. Journal of Neuroscience, 2019, 39, 9797-9805.	3.6	84
33	Implicit temporal predictability enhances pitch discrimination sensitivity and biases the phase of delta oscillations in auditory cortex. Neurolmage, 2019, 203, 116198.	4.2	49
34	Working-memory disruption by task-irrelevant talkers depends on degree of talker familiarity. Attention, Perception, and Psychophysics, 2019, 81, 1108-1118.	1.3	8
35	Modular reconfiguration of an auditory control brain network supports adaptive listening behavior. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 660-669.	7.1	42
36	Late cortical tracking of ignored speech facilitates neural selectivity in acoustically challenging conditions. Neurolmage, 2019, 186, 33-42.	4.2	105

#	Article	IF	Citations
37	Prestimulus neural alpha power predicts confidence in discriminating identical auditory stimuli. European Journal of Neuroscience, 2019, 49, 94-105.	2.6	54
38	Oscillatory dynamics of cortical functional connections in semantic prediction. Human Brain Mapping, 2019, 40, 1856-1866.	3.6	18
39	Temporal Sensitivity Measured Shortly After Cochlear Implantation Predicts 6-Month Speech Recognition Outcome. Ear and Hearing, 2019, 40, 27-33.	2.1	8
40	Local cortical desynchronization and pupil-linked arousal differentially shape brain states for optimal sensory performance. ELife, 2019, 8, .	6.0	78
41	Opposite effects of lateralised transcranial alpha versus gamma stimulation on auditory spatial attention. Brain Stimulation, 2018, 11, 752-758.	1.6	64
42	Dopaminergic modulation of hemodynamic signal variability and the functional connectome during cognitive performance. Neurolmage, 2018, 172, 341-356.	4.2	54
43	Probing the limits of alpha power lateralisation as a neural marker of selective attention in middleâ€aged and older listeners. European Journal of Neuroscience, 2018, 48, 2537-2550.	2.6	53
44	Transcranial alternating current stimulation with speech envelopes modulates speech comprehension. Neurolmage, 2018, 172, 766-774.	4.2	85
45	Tracking Temporal Hazard in the Human Electroencephalogram Using a Forward Encoding Model. ENeuro, 2018, 5, ENEURO.0017-18.2018.	1.9	27
46	Perceptual grouping in the cocktail party: Contributions of voice-feature continuity. Journal of the Acoustical Society of America, 2018, 144, 2178-2188.	1.1	13
47	The Benefit of Attention-to-Memory Depends on the Interplay of Memory Capacity and Memory Load. Frontiers in Psychology, 2018, 9, 184.	2.1	6
48	Temporal Expectation Modulates the Cortical Dynamics of Short-Term Memory. Journal of Neuroscience, 2018, 38, 7428-7439.	3 . 6	17
49	Neurowissenschaften. , 2018, , 140-144.		1
50	Tracking the signal, cracking the code: speech and speech comprehension in non-invasive human electrophysiology. Language, Cognition and Neuroscience, 2017, 32, 855-869.	1.2	45
51	Implicit variations of temporal predictability: Shaping the neural oscillatory and behavioural response. Neuropsychologia, 2017, 101, 141-152.	1.6	27
52	Single-channel in-ear-EEG detects the focus of auditory attention to concurrent tone streams and mixed speech. Journal of Neural Engineering, 2017, 14, 036020.	3.5	116
53	The Human Neural Alpha Response to Speech is a Proxy of Attentional Control. Cerebral Cortex, 2017, 27, 3307-3317.	2.9	109
54	Large-scale network dynamics of beta-band oscillations underlie auditory perceptual decision-making. Network Neuroscience, 2017, 1, 166-191.	2.6	19

#	Article	IF	CITATIONS
55	Aging affects the balance of neural entrainment and top-down neural modulation in the listening brain. Nature Communications, 2017, 8, 15801.	12.8	93
56	Neural tracking of attended versus ignored speech is differentially affected by hearing loss. Journal of Neurophysiology, 2017, 117, 18-27.	1.8	96
57	States and traits of neural irregularity in the age-varying human brain. Scientific Reports, 2017, 7, 17381.	3.3	97
58	What do we talk about when we talk about rhythm?. PLoS Biology, 2017, 15, e2002794.	5.6	47
59	Acoustic Detail But Not Predictability of Task-Irrelevant Speech Disrupts Working Memory. Frontiers in Human Neuroscience, 2016, 10, 538.	2.0	22
60	Prediction Signatures in the Brain: Semantic Pre-Activation during Language Comprehension. Frontiers in Human Neuroscience, 2016, 10, 591.	2.0	48
61	Predictions interact with missing sensory evidence in semantic processing areas. Human Brain Mapping, 2016, 37, 704-716.	3.6	5
62	Temporal expectations and neural amplitude fluctuations in auditory cortex interactively influence perception. Neurolmage, 2016, 124, 487-497.	4.2	77
63	Altered temporal dynamics of neural adaptation in the aging human auditory cortex. Neurobiology of Aging, 2016, 45, 10-22.	3.1	47
64	Neural Microstates Govern Perception of Auditory Input without Rhythmic Structure. Journal of Neuroscience, 2016, 36, 860-871.	3.6	33
65	What works in auditory working memory? A neural oscillations perspective. Brain Research, 2016, 1640, 193-207.	2.2	48
66	Spatiotemporal dynamics of auditory attention synchronize with speech. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3873-3878.	7.1	169
67	Tell me something I don't know. ELife, 2016, 5, e15853.	6.0	3
68	Slowâ€delta phase concentration marks improved temporal expectations based on the passage of time. Psychophysiology, 2015, 52, 910-918.	2.4	33
69	Hearing loss impacts neural alpha oscillations under adverse listening conditions. Frontiers in Psychology, 2015, 6, 177.	2.1	62
70	Statistical context shapes stimulus-specific adaptation in human auditory cortex. Journal of Neurophysiology, 2015, 113, 2582-2591.	1.8	40
71	Alpha Phase Determines Successful Lexical Decision in Noise. Journal of Neuroscience, 2015, 35, 3256-3262.	3.6	67
72	Selective Attention to Auditory Memory Neurally Enhances Perceptual Precision. Journal of Neuroscience, 2015, 35, 16094-16104.	3.6	53

#	Article	IF	CITATIONS
73	Neural Alpha Dynamics in Younger and Older Listeners Reflect Acoustic Challenges and Predictive Benefits. Journal of Neuroscience, 2015, 35, 1458-1467.	3.6	116
74	Acoustic Detail Guides Attention Allocation in a Selective Listening Task. Journal of Cognitive Neuroscience, 2015, 27, 988-1000.	2.3	31
75	Re-visiting the electrophysiology of language. Brain and Language, 2015, 148, 23-24.	1.6	0
76	Acoustic cue selection and discrimination under degradation: Differential contributions of the inferior parietal and posterior temporal cortices. Neurolmage, 2015, 106, 373-381.	4.2	2
77	Sensitivity of rat inferior colliculus neurons to frequency distributions. Journal of Neurophysiology, 2015, 114, 2941-2954.	1.8	15
78	Repetitive transcranial magnetic stimulation over left angular gyrus modulates the predictability gain in degraded speech comprehension. Cortex, 2015, 68, 100-110.	2.4	65
79	Selective Attention to Temporal Features on Nested Time Scales. Cerebral Cortex, 2015, 25, 450-459.	2.9	30
80	Alpha Oscillatory Dynamics Index Temporal Expectation Benefits in Working Memory. Cerebral Cortex, 2015, 25, 1938-1946.	2.9	95
81	Cortical alpha oscillations as a tool for auditory selective inhibition. Frontiers in Human Neuroscience, 2014, 8, 350.	2.0	142
82	Simultaneous EEG-fMRI brain signatures of auditory cue utilization. Frontiers in Neuroscience, 2014, 8, 137.	2.8	12
83	Putting the Listening Brain in Context. Language and Linguistics Compass, 2014, 8, 646-658.	2.3	19
84	Alpha and theta brain oscillations index dissociable processes in spoken word recognition. NeuroImage, 2014, 97, 387-395.	4.2	81
85	Synchronisation signatures in the listening brain: A perspective from non-invasive neuroelectrophysiology. Hearing Research, 2014, 307, 16-28.	2.0	48
86	Dynamic Range Adaptation to Spectral Stimulus Statistics in Human Auditory Cortex. Journal of Neuroscience, 2014, 34, 327-331.	3.6	43
87	Entrained neural oscillations in multiple frequency bands comodulate behavior. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14935-14940.	7.1	183
88	Sentence processing and verbal working memory in a white-matter-disconnection patient. Neuropsychologia, 2014, 61, 190-196.	1.6	38
89	Supplementary motor area activations predict individual differences in temporal-change sensitivity and its illusory distortions. Neurolmage, 2014, 101, 370-379.	4.2	15
90	Cortical brain states and corticospinal synchronization influence TMS-evoked motor potentials. Journal of Neurophysiology, 2014, 111, 513-519.	1.8	98

#	Article	IF	Citations
91	Prediction in the service of comprehension: Modulated early brain responses to omitted speech segments. Cortex, 2014, 53, 9-26.	2.4	59
92	Thalamic and parietal brain morphology predicts auditory category learning. Neuropsychologia, 2014, 53, 75-83.	1.6	6
93	Prior experience with negative spectral correlations promotes information integration during auditory category learning. Memory and Cognition, 2013, 41, 752-768.	1.6	20
94	Semantic versus perceptual interactions in neural processing of speech-in-noise. NeuroImage, 2013, 79, 52-61.	4.2	56
95	Auditory filter width affects response magnitude but not frequency specificity in auditory cortex. Hearing Research, 2013, 304, 128-136.	2.0	32
96	You can't stop the music: Reduced auditory alpha power and coupling between auditory and memory regions facilitate the illusory perception of music during noise. NeuroImage, 2013, 79, 383-393.	4.2	34
97	The Brain Dynamics of Rapid Perceptual Adaptation to Adverse Listening Conditions. Journal of Neuroscience, 2013, 33, 10688-10697.	3.6	131
98	Attention modulates the use of spectral attributes in vowel discrimination: Behavioral and event-related potential evidence. Brain Research, 2013, 1490, 170-183.	2.2	7
99	Left parietal alpha enhancement during working memory-intensive sentence processing. Cortex, 2013, 49, 711-721.	2.4	94
100	Narrowed Expectancies under Degraded Speech: Revisiting the N400. Journal of Cognitive Neuroscience, 2013, 25, 1383-1395.	2.3	90
101	Facilitation of Inferior Frontal Cortex by Transcranial Direct Current Stimulation Induces Perceptual Learning of Severely Degraded Speech. Journal of Neuroscience, 2013, 33, 15868-15878.	3.6	21
102	Oscillatory Phase Dynamics in Neural Entrainment Underpin Illusory Percepts of Time. Journal of Neuroscience, 2013, 33, 15799-15809.	3.6	47
103	Frequency-specific adaptation in human auditory cortex depends on the spectral variance in the acoustic stimulation. Journal of Neurophysiology, 2013, 109, 2086-2096.	1.8	55
104	Dissociable Neural Response Signatures for Slow Amplitude and Frequency Modulation in Human Auditory Cortex. PLoS ONE, 2013, 8, e78758.	2.5	11
105	Upregulation of cognitive control networks in older adults' speech comprehension. Frontiers in Systems Neuroscience, 2013, 7, 116.	2.5	96
106	Suppressed Alpha Oscillations Predict Intelligibility of Speech and its Acoustic Details. Cerebral Cortex, 2012, 22, 2466-2477.	2.9	168
107	Frequency modulation entrains slow neural oscillations and optimizes human listening behavior. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20095-20100.	7.1	344
108	Adverse Listening Conditions and Memory Load Drive a Common Alpha Oscillatory Network. Journal of Neuroscience, 2012, 32, 12376-12383.	3.6	173

#	Article	lF	CITATIONS
109	Spatiotemporal Dynamics of Argument Retrieval and Reordering: An fMRI and EEG Study on Sentence Processing. Frontiers in Psychology, 2012, 3, 523.	2.1	19
110	Auditory skills and brain morphology predict individual differences in adaptation to degraded speech. Neuropsychologia, 2012, 50, 2154-2164.	1.6	49
111	Left prefrontal cortex activation during sentence comprehension covaries with grammatical knowledge in children. Neurolmage, 2012, 62, 207-216.	4.2	36
112	Linking ordering in Broca's area to storage in left temporo-parietal regions: The case of sentence processing. Neurolmage, 2012, 62, 1987-1998.	4.2	75
113	How Bodies and Voices Interact in Early Emotion Perception. PLoS ONE, 2012, 7, e36070.	2.5	37
114	A Sparse Neural Code for Some Speech Sounds but Not for Others. PLoS ONE, 2012, 7, e40953.	2.5	30
115	Neural Oscillations in Speech: Don't be Enslaved by the Envelope. Frontiers in Human Neuroscience, 2012, 6, 250.	2.0	72
116	Speech comprehension aided by multiple modalities: Behavioural and neural interactions. Neuropsychologia, 2012, 50, 762-776.	1.6	81
117	Dissociable neural imprints of perception and grammar in auditory functional imaging. Human Brain Mapping, 2012, 33, 584-595.	3.6	42
118	Dynamic assignment of neural resources in auditory comprehension of complex sentences. Neurolmage, 2011, 56, 2310-2320.	4.2	61
119	Multiple brain signatures of integration in the comprehension of degraded speech. Neurolmage, 2011, 55, 713-723.	4.2	125
120	Alpha Rhythms in Audition: Cognitive and Clinical Perspectives. Frontiers in Psychology, 2011, 2, 73.	2.1	246
121	Disentangling syntax and intelligibility in auditory language comprehension. Human Brain Mapping, 2010, 31, 448-457.	3.6	112
122	Segregation of Vowels and Consonants in Human Auditory Cortex: Evidence for Distributed Hierarchical Organization. Frontiers in Psychology, 2010, 1, 232.	2.1	56
123	Integration of iconic gestures and speech in left superior temporal areas boosts speech comprehension under adverse listening conditions. NeuroImage, 2010, 49, 875-884.	4.2	132
124	Expectancy Constraints in Degraded Speech Modulate the Language Comprehension Network. Cerebral Cortex, 2010, 20, 633-640.	2.9	236
125	The representation of the verb's argument structure as disclosed by fMRI. BMC Neuroscience, 2009, 10, 3.	1.9	10
126	Pre-lexical abstraction of speech in the auditory cortex. Trends in Cognitive Sciences, 2009, 13, 14-19.	7.8	134

#	Article	IF	Citations
127	Where Are the Human Speech and Voice Regions, and Do Other Animals Have Anything Like Them?. Neuroscientist, 2009, 15, 419-429.	3.5	56
128	Bilateral Speech Comprehension Reflects Differential Sensitivity to Spectral and Temporal Features. Journal of Neuroscience, 2008, 28, 8116-8123.	3.6	177
129	Functional Integration across Brain Regions Improves Speech Perception under Adverse Listening Conditions. Journal of Neuroscience, 2007, 27, 2283-2289.	3.6	339
130	Multiple Stages of Auditory Speech Perception Reflected in Event-Related fMRI. Cerebral Cortex, 2007, 17, 2251-2257.	2.9	145
131	Perception of acoustically complex phonological features in vowels is reflected in the induced brain-magnetic activity. Behavioral and Brain Functions, 2007, 3, 26.	3.3	10
132	Auditory evoked fields differentially encode speech features: an MEG investigation of the P50m and N100m time courses during syllable processing. European Journal of Neuroscience, 2007, 25, 3155-3162.	2.6	35
133	Top-down knowledge supports the retrieval of lexical information from degraded speech. Brain Research, 2007, 1153, 134-143.	2.2	72
134	Recovery from aphasia as a function of language therapy in an early bilingual patient demonstrated by fMRI. Neuropsychologia, 2007, 45, 1247-1256.	1.6	103
135	Brain regions essential for improved lexical access in an aged aphasic patient: a case report. BMC Neurology, 2006, 6, 28.	1.8	46
136	Vowel sound extraction in anterior superior temporal cortex. Human Brain Mapping, 2006, 27, 562-571.	3.6	163
137	Now You Hear It, Now You Don't: Transient Traces of Consonants and their Nonspeech Analogues in the Human Brain. Cerebral Cortex, 2006, 16, 1069-1076.	2.9	70
138	Magnetic Brain Response Mirrors Extraction of Phonological Features from Spoken Vowels. Journal of Cognitive Neuroscience, 2004, 16, 31-39.	2.3	120
139	Gender differences in hemispheric asymmetry of syllable processing: Left-lateralized magnetic N100 varies with syllable categorization in females. Psychophysiology, 2004, 41, 783-788.	2.4	7
140	Attentional influences on functional mapping of speech sounds in human auditory cortex. BMC Neuroscience, 2004, 5, 24.	1.9	31
141	Intra-subject replication of brain magnetic activity during the processing of speech sounds. Cognitive Brain Research, 2004, 19, 82-91.	3.0	23
142	Cortical representation of vowels reflects acoustic dissimilarity determined by formant frequencies. Cognitive Brain Research, 2003, 15, 207-213.	3.0	75
143	Auditory-evoked magnetic field codes place of articulation in timing and topography around 100 milliseconds post syllable onset. Neurolmage, 2003, 20, 1839-1847.	4.2	70
144	Gender differences in functional hemispheric asymmetry during processing of vowels as reflected by the human brain magnetic response. Neuroscience Letters, 2001, 314, 131-134.	2.1	35