Jingyu Xi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6041459/publications.pdf

Version: 2024-02-01

139	9,389	55	92
papers	citations	h-index	g-index
139	139	139	7846
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Highly catalytic porous MoN nanosheets anchored carbon microtubes interlayer for lithium-sulfur batteries. Materials Today Energy, 2022, 24, 100941.	2.5	9
2	Efficient and Durable Cu ₃ P-FeP for Hydrogen Evolution from Seawater with Current Density Exceeding 1 A cm ^{–2} . ACS Applied Energy Materials, 2022, 5, 2909-2917.	2.5	3
3	ZIF-derived holey electrode with enhanced mass transfer and N-rich catalytic sites for high-power and long-life vanadium flow batteries. Journal of Energy Chemistry, 2022, 72, 545-553.	7.1	19
4	Advanced cathodic free-standing interlayers for lithium–sulfur batteries: understanding, fabrication, and modification. Physical Chemistry Chemical Physics, 2022, 24, 17383-17396.	1.3	9
5	Identifying the active sites and multifunctional effects in nitrogen-doped carbon microtube interlayer for confining-trapping-catalyzing polysulfides. Nano Energy, 2021, 79, 105466.	8.2	28
6	In situ detection of electrochemical reaction by weak measurement. Optics Express, 2021, 29, 19292.	1.7	3
7	Integrated Design of Interlayer/Currentâ€Collector: Heteronanowires Decorated Carbon Microtube Fabric for Highâ€Loading and Leanâ€Electrolyte Lithium–Sulfur Batteries. Small, 2021, 17, e2103001.	5.2	27
8	Tailoring the vanadium/proton ratio of electrolytes to boost efficiency and stability of vanadium flow batteries over a wide temperature range. Applied Energy, 2021, 301, 117454.	5.1	54
9	MoS2–CoS2 heteronanosheet arrays coated on porous carbon microtube textile for overall water splitting. Journal of Power Sources, 2021, 514, 230580.	4.0	32
10	An Optimized Angular Total Internal Reflection Sensor With High Resolution in Vanadium Flow Batteries. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 3170-3178.	2.4	7
11	Boosting the thermal stability of electrolytes in vanadium redox flow batteries via 1-hydroxyethane-1,1-diphosphonic acid. Journal of Applied Electrochemistry, 2020, 50, 255-264.	1.5	9
12	Carbon Microtube Textile with MoS ₂ Nanosheets Grown on Both Outer and Inner Walls as Multifunctional Interlayer for Lithium–Sulfur Batteries. Advanced Science, 2020, 7, 1903260.	5.6	60
13	Method of Reflow and Online Electrolysis in the Vanadium Redox Battery: Benefits and Limitations. ACS Sustainable Chemistry and Engineering, 2020, 8, 10275-10283.	3.2	13
14	Efficiently immobilizing and converting polysulfide by a phosphorus doped carbon microtube textile interlayer for high-performance lithium-sulfur batteries. Electrochimica Acta, 2020, 345, 136186.	2.6	32
15	In-situ deposition and subsequent growth of Pd on SnO2 as catalysts for formate oxidation with excellent Pd utilization and anti-poisoning performance. International Journal of Hydrogen Energy, 2019, 44, 21518-21526.	3.8	12
16	Selective Electro-Oxidation of Glycerol to Dihydroxyacetone by PtAg Skeletons. ACS Applied Materials & Lamp; Interfaces, 2019, 11, 28953-28959.	4.0	49
17	The indefinite cycle life via a method of mixing and online electrolysis for vanadium redox flow batteries. Journal of Power Sources, 2019, 438, 226990.	4.0	31
18	Waste cotton cloth derived carbon microtube textile: a robust and scalable interlayer for lithium–sulfur batteries. Chemical Communications, 2019, 55, 2289-2292.	2.2	70

#	Article	IF	Citations
19	Bilayer Designed Hydrocarbon Membranes for All-Climate Vanadium Flow Batteries To Shield Catholyte Degradation and Mitigate Electrolyte Crossover. ACS Applied Materials & Diterfaces, 2019, 11, 13285-13294.	4.0	30
20	Sandwiching h-BN Monolayer Films between Sulfonated Poly(ether ether ketone) and Nafion for Proton Exchange Membranes with Improved Ion Selectivity. ACS Nano, 2019, 13, 2094-2102.	7.3	52
21	Revealing sulfuric acid concentration impact on comprehensive performance of vanadium electrolytes and flow batteries. Electrochimica Acta, 2019, 303, 21-31.	2.6	30
22	Simultaneously Providing Iron Source toward Electro-Fenton Process and Enhancing Hydrogen Peroxide Production via a Fe ₃ O ₄ Nanoparticles Embedded Graphite Felt Electrode. ACS Applied Materials & Diterraces, 2019, 11, 45692-45701.	4.0	36
23	In situ mapping of activity distribution and oxygen evolution reaction in vanadium flow batteries. Nature Communications, 2019, 10, 5286.	5.8	45
24	Achieving efficient and inexpensive vanadium flow battery by combining CexZr1â^'xO2 electrocatalyst and hydrocarbon membrane. Chemical Engineering Journal, 2019, 356, 622-631.	6.6	141
25	P-doped electrode for vanadium flow battery with high-rate capability and all-climate adaptability. Journal of Energy Chemistry, 2019, 35, 55-59.	7.1	40
26	Exceptional Performance of Hierarchical Ni–Fe (hydr)oxide@NiCu Electrocatalysts for Water Splitting. Advanced Materials, 2019, 31, e1806769.	11.1	124
27	Aliphatic/aromatic sulfonated polyimide membranes with cross-linked structures for vanadium flow batteries. Journal of Membrane Science, 2019, 572, 119-127.	4.1	63
28	Ultralight carbon flakes modified separator as an effective polysulfide barrier for lithium-sulfur batteries. Electrochimica Acta, 2019, 295, 910-917.	2.6	50
29	Seed-mediated synthesis of PtxAuy@Ag electrocatalysts for the selective oxidation of glycerol. Applied Catalysis B: Environmental, 2019, 245, 604-612.	10.8	82
30	Broad temperature adaptability of vanadium redox flow battery–part 4: Unraveling wide temperature promotion mechanism of bismuth for V2+/V3+ couple. Journal of Energy Chemistry, 2018, 27, 1333-1340.	7.1	41
31	Toward Cheaper Vanadium Flow Batteries: Porous Polyethylene Reinforced Membrane with Superior Durability. ACS Applied Energy Materials, 2018, 1, 1641-1648.	2.5	27
32	Acid-base membranes of imidazole-based sulfonated polyimides for vanadium flow batteries. Journal of Membrane Science, 2018, 552, 167-176.	4.1	65
33	CNT@polydopamine embedded mixed matrix membranes for high-rate and long-life vanadium flow batteries. Journal of Membrane Science, 2018, 549, 411-419.	4.1	60
34	Broad temperature adaptability of vanadium redox flow battery-Part 3: The effects of total vanadium concentration and sulfuric acid concentration. Electrochimica Acta, 2018, 259, 11-19.	2.6	56
35	Nickel–Copper Alloy Encapsulated in Graphitic Carbon Shells as Electrocatalysts for Hydrogen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1701759.	10.2	225
36	Holey-engineered electrodes for advanced vanadium flow batteries. Nano Energy, 2018, 43, 55-62.	8.2	127

#	Article	IF	Citations
37	Real-Time Study of the Disequilibrium Transfer in Vanadium Flow Batteries at Different States of Charge via Refractive Index Detection. Journal of Physical Chemistry C, 2018, 122, 28550-28555.	1.5	15
38	Carbon layer-confined sphere/fiber hierarchical electrodes for efficient and durable vanadium flow batteries. Journal of Power Sources, 2018, 402, 453-459.	4.0	19
39	Bifunctional effects of halloysite nanotubes in vanadium flow battery membrane. Journal of Membrane Science, 2018, 564, 237-246.	4.1	31
40	Phosphorus-doped carbon nitride as powerful electrocatalyst for high-power vanadium flow battery. Electrochimica Acta, 2018, 286, 22-28.	2.6	24
41	Rice Paper Reinforced Sulfonated Poly(ether ether ketone) as Low-Cost Membrane for Vanadium Flow Batteries. ACS Sustainable Chemistry and Engineering, 2017, 5, 2437-2444.	3.2	39
42	Electrochemical evaluation methods of vanadium flow battery electrodes. Physical Chemistry Chemical Physics, 2017, 19, 14708-14717.	1.3	43
43	Reduction of capacity decay in vanadium flow batteries by an electrolyte-reflow method. Journal of Power Sources, 2017, 338, 17-25.	4.0	73
44	Carbon dots promoted vanadium flow batteries for all-climate energy storage. Chemical Communications, 2017, 53, 7565-7568.	2.2	46
45	Rational use and reuse of Nafion 212 membrane in vanadium flow batteries. RSC Advances, 2017, 7, 19425-19433.	1.7	35
46	One-pot synthesis of ultrafine decahedral platinum crystal decorated graphite nanosheets for the electro-oxidation of formic acid. Journal of Catalysis, 2017, 345, 70-77.	3.1	13
47	Asymmetric vanadium flow batteries: long lifespan via an anolyte overhang strategy. Physical Chemistry Chemical Physics, 2017, 19, 29195-29203.	1.3	21
48	Structure–property relationship study of Nafion XL membrane for high-rate, long-lifespan, and all-climate vanadium flow batteries. RSC Advances, 2017, 7, 31164-31172.	1.7	21
49	Rapid detection of the positive side reactions in vanadium flow batteries. Applied Energy, 2017, 185, 452-462.	5.1	23
50	Membrane evaluation for vanadium flow batteries in a temperature range of â^20–50 °C. Journal of Membrane Science, 2017, 522, 45-55.	4.1	90
51	Electrospun polyacrylonitrile nanofiber mat protected membranes for vanadium flow batteries. RSC Advances, 2017, 7, 54644-54650.	1.7	3
52	The benefits and limitations of electrolyte mixing in vanadium flow batteries. Applied Energy, 2017, 204, 373-381.	5.1	76
53	Insights into the Impact of the Nafion Membrane Pretreatment Process on Vanadium Flow Battery Performance. ACS Applied Materials & Samp; Interfaces, 2016, 8, 12228-12238.	4.0	166
54	Constructing Three-Dimensional Hierarchical Architectures by Integrating Carbon Nanofibers into Graphite Felts for Water Purification. ACS Sustainable Chemistry and Engineering, 2016, 4, 2351-2358.	3.2	57

#	Article	IF	CITATIONS
55	Alcohol electro-oxidation on platinum–ceria/graphene nanosheet in alkaline solutions. International Journal of Hydrogen Energy, 2016, 41, 20709-20719.	3.8	46
56	Durable and Efficient PTFE Sandwiched SPEEK Membrane for Vanadium Flow Batteries. ACS Applied Materials & Samp; Interfaces, 2016, 8, 23425-23430.	4.0	68
57	KOH etched graphite felt with improved wettability and activity for vanadium flow batteries. Electrochimica Acta, 2016, 218, 15-23.	2.6	156
58	Boosting vanadium flow battery performance by Nitrogen-doped carbon nanospheres electrocatalyst. Nano Energy, 2016, 28, 19-28.	8.2	192
59	ZrO ₂ -Nanoparticle-Modified Graphite Felt: Bifunctional Effects on Vanadium Flow Batteries. ACS Applied Materials & Date (1997) amp; Interfaces, 2016, 8, 15369-15378.	4.0	234
60	Synthesis and properties of highly branched sulfonated poly(arylene ether)s with flexible alkylsulfonated side chains as proton exchange membranes. Journal of Materials Chemistry C, 2016, 4, 1326-1335.	2.7	35
61	Ternary Platinum–Copper–Nickel Nanoparticles Anchored to Hierarchical Carbon Supports as Free-Standing Hydrogen Evolution Electrodes. ACS Applied Materials & Therfaces, 2016, 8, 3464-3472.	4.0	93
62	Nano oxides incorporated sulfonated poly(ether ether ketone) membranes with improved selectivity and stability for vanadium redox flow battery. Journal of Solid State Electrochemistry, 2016, 20, 1271-1283.	1.2	44
63	Broad temperature adaptability of vanadium redox flow batteryâ€"Part 1: Electrolyte research. Electrochimica Acta, 2016, 187, 525-534.	2.6	127
64	A facile approach to fabricate free-standing hydrogen evolution electrodes: riveting tungsten carbide nanocrystals to graphite felt fabrics by carbon nanosheets. Journal of Materials Chemistry A, 2016, 4, 5817-5822.	5.2	39
65	A comparative study of Nafion series membranes for vanadium redox flow batteries. Journal of Membrane Science, 2016, 510, 18-26.	4.1	384
66	Broad temperature adaptability of vanadium redox flow batteryâ€"Part 2: Cell research. Electrochimica Acta, 2016, 191, 695-704.	2.6	84
67	A recast Nafion/graphene oxide composite membrane for advanced vanadium redox flow batteries. RSC Advances, 2016, 6, 3756-3763.	1.7	90
68	Transient Absorption of N719 and its Electron Transfer Kinetics on ZnO Nanoparticles Surface. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 169-175.	1.9	7
69	Comparison study of few-layered graphene supported platinum and platinum alloys for methanol and ethanol electro-oxidation. Journal of Power Sources, 2015, 278, 235-244.	4.0	71
70	Highly branched sulfonated poly(fluorenyl ether ketone sulfone)s membrane for energy efficient vanadium redox flow battery. Journal of Power Sources, 2015, 285, 109-118.	4.0	66
71	Effect of degree of sulfonation and casting solvent on sulfonated poly(ether ether ketone) membrane for vanadium redox flow battery. Journal of Power Sources, 2015, 285, 195-204.	4.0	167
72	Polydopamine coated SPEEK membrane for a vanadium redox flow battery. RSC Advances, 2015, 5, 33400-33406.	1.7	42

#	Article	IF	CITATIONS
7 3	SPEEK/Graphene oxide nanocomposite membranes with superior cyclability for highly efficient vanadium redox flow battery. Journal of Materials Chemistry A, 2014, 2, 12423-12432.	5.2	244
74	Synthesis of Pt, PtRh, and PtRhNi Alloys Supported by Pristine Graphene Nanosheets for Ethanol Electrooxidation. ChemCatChem, 2014, 6, 3254-3261.	1.8	49
75	Sulfonated poly(ether ether ketone)/mesoporous silica hybrid membrane for high performance vanadium redox flow battery. Journal of Power Sources, 2014, 257, 221-229.	4.0	113
76	Highly active Pt-on-Au catalysts for methanol oxidation in alkaline media involving a synergistic interaction between Pt and Au. Electrochimica Acta, 2014, 123, 309-316.	2.6	22
77	Sulfonated Poly(Ether Ether Ketone)/Graphene composite membrane for vanadium redox flow battery. Electrochimica Acta, 2014, 132, 200-207.	2.6	120
78	CeO ₂ decorated graphite felt as a high-performance electrode for vanadium redox flow batteries. RSC Advances, 2014, 4, 61912-61918.	1.7	128
79	Synthesis of Ultrafine Pt Nanoparticles Stabilized by Pristine Graphene Nanosheets for Electro-oxidation of Methanol. ACS Applied Materials & Samp; Interfaces, 2014, 6, 15162-15170.	4.0	66
80	Properties Investigation of Sulfonated Poly(ether ether ketone)/Polyacrylonitrile Acid–Base Blend Membrane for Vanadium Redox Flow Battery Application. ACS Applied Materials & Diterfaces, 2014, 6, 18885-18893.	4.0	162
81	Electrocatalytic activity of Pt subnano/nanoclusters stabilized by pristine graphene nanosheets. Physical Chemistry Chemical Physics, 2014, 16, 21609-21614.	1.3	27
82	Characterization of sulfonated poly(ether ether ketone)/poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 3 Journal of Power Sources, 2014, 272, 427-435.	87 Td (fluo 4.0	oride-co-hexafl 63
83	Preparation and characterization of sulfonated poly(ether ether ketone)/poly(vinylidene fluoride) blend membrane for vanadium redox flow battery application. Journal of Power Sources, 2013, 237, 132-140.	4.0	94
84	Electrochemical activation of graphite felt electrode for VO2+/VO2+ redox couple application. Electrochimica Acta, 2013, 89, 429-435.	2.6	300
85	Synthesis of highly active SnO2-CNTs supported Pt-on-Au composite catalysts through site-selective electrodeposition for HCOOH electrooxidation. Electrochimica Acta, 2013, 112, 480-485.	2.6	15
86	Novel Organic D-ï€-2A Sensitizer for Dye Sensitized Solar Cells and Its Electron Transfer Kinetics on TiO ₂ Surface. Journal of Physical Chemistry C, 2013, 117, 2041-2052.	1.5	37
87	Photo-induced electron transfer in a pyrenylcarbazole containing polymer–multiwalled carbon nanotube composite. New Journal of Chemistry, 2013, 37, 1833.	1.4	9
88	Online Spectroscopic Study on the Positive and the Negative Electrolytes in Vanadium Redox Flow Batteries. Journal of Spectroscopy, 2013, 2013, 1-8.	0.6	11
89	State of charge monitoring for vanadium redox flow batteries by the transmission spectra of $V(IV)/V(V)$ electrolytes. Journal of Applied Electrochemistry, 2012, 42, 1025-1031.	1.5	55
90	CeO2 nanoparticles improved Pt-based catalysts for direct alcohol fuel cells. International Journal of Hydrogen Energy, 2012, 37, 15938-15947.	3.8	63

#	Article	IF	Citations
91	The degradation mechanism of methyl orange under photo-catalysis of TiO2. Physical Chemistry Chemical Physics, 2012, 14, 3589.	1.3	89
92	TiO2 nanoparticles promoted Pt/C catalyst for ethanol electro-oxidation. Electrochimica Acta, 2012, 67, 166-171.	2.6	52
93	Solubility Rules of Negative Electrolyte V ₂ (SO ₄) ₃ of Vanadium Redox Flow Battery. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2012, 27, 469-474.	0.6	10
94	Nafion/organic silica modified TiO2 composite membrane for vanadium redox flow battery via in situ sol–gel reactions. Journal of Membrane Science, 2009, 341, 149-154.	4.1	206
95	Nafion/organically modified silicate hybrids membrane for vanadium redox flow battery. Journal of Power Sources, 2009, 189, 1240-1246.	4.0	170
96	Steam reforming of ethanol for hydrogen production over NiO/ZnO/ZrO2 catalysts. International Journal of Hydrogen Energy, 2008, 33, 1008-1008.	3.8	25
97	Self-assembled polyelectrolyte multilayer modified Nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries. Journal of Materials Chemistry, 2008, 18, 1232.	6.7	277
98	Preparation of Ptâ^•CeO[sub 2]–CNTs Through Spontaneous Adsorbing Pt Nanoparticles onto CNTs Aided by CeO[sub 2]. Electrochemical and Solid-State Letters, 2007, 10, B114.	2.2	9
99	Facile approach to enhance the Pt utilization and CO-tolerance of Pt/C catalysts by physically mixing with transition-metal oxide nanoparticles. Chemical Communications, 2007, , 1656.	2.2	63
100	A new proton conducting membrane based on copolymer of methyl methacrylate and 2-acrylamido-2-methyl-1-propanesulfonic acid for direct methanol fuel cells. Electrochimica Acta, 2007, 52, 6956-6961.	2.6	41
101	Structural designing of Pt-CeO2/CNTs for methanol electro-oxidation. Journal of Power Sources, 2007, 164, 555-560.	4.0	127
102	Nafion/SiO2 hybrid membrane for vanadium redox flow battery. Journal of Power Sources, 2007, 166, 531-536.	4.0	416
103	Promoting the current for methanol electro-oxidation by mixing Pt-based catalysts with CeO2 nanoparticles. Journal of Power Sources, 2007, 170, 297-302.	4.0	43
104	Electrochemical characterization of Pt-CeO2/C and Pt-CexZr1â^xxO2/C catalysts for ethanol electro-oxidation. Applied Catalysis B: Environmental, 2007, 73, 144-149.	10.8	89
105	Mesocarbon microbeads supported PtSn catalysts for electrochemical oxidation of ethanol. Journal of Materials Science, 2007, 42, 4508-4512.	1.7	10
106	One-Pot Synthesis of Poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) Nanotubes via an In Situ Template Approach. Advanced Materials, 2006, 18, 2997-3000.	11.1	167
107	Investigations on the enhancement mechanism of inorganic filler on ionic conductivity of PEO-based composite polymer electrolyte: The case of molecular sieves. Electrochimica Acta, 2006, 51, 4765-4770.	2.6	20
108	Enhanced high-potential and elevated-temperature cycling stability of LiMn2O4 cathode by TiO2 modification for Li-ion battery. Electrochimica Acta, 2006, 51, 6406-6411.	2.6	80

#	Article	IF	CITATIONS
109	Enhanced electrochemical properties of poly(ethylene oxide)-based composite polymer electrolyte with ordered mesoporous materials for lithium polymer battery. Microporous and Mesoporous Materials, 2006, 88, 1-7.	2.2	56
110	Enhanced electrochemical properties of PEO-based composite polymer electrolyte with shape-selective molecular sieves. Journal of Power Sources, 2006, 156, 581-588.	4.0	84
111	PVDF–PEO blends based microporous polymer electrolyte: Effect of PEO on pore configurations and ionic conductivity. Journal of Power Sources, 2006, 157, 501-506.	4.0	171
112	Effect of molecular sieves ZSM-5 on the crystallization behavior of PEO-based composite polymer electrolyte. Journal of Power Sources, 2006, 158, 627-634.	4.0	29
113	A nanocomposite proton exchange membrane based on PVDF, poly(2-acrylamido-2-methyl propylene) Tj ETQq1 1894-899.	0.784314 4.0	rgBT /Over 46
114	PVDF-g-PSSA and Al2O3 composite proton exchange membranes. Journal of Power Sources, 2006, 161, 54-60.	4.0	59
115	PVDF–PEO/ZSM-5 based composite microporous polymer electrolyte with novel pore configuration and ionic conductivity. Solid State Ionics, 2006, 177, 709-713.	1.3	37
116	Polysilaethers bearing Si–H and its functionalization via hydrosilylation with acrylic acid. Polymer, 2005, 46, 9162-9169.	1.8	8
117	Electrochemical oxidation of ethanol on Pt–ZrO2/C catalyst. Electrochemistry Communications, 2005, 7, 1087-1090.	2.3	150
118	Novel composite polymer electrolyte comprising poly(ethylene oxide) and triblock copolymer/mesostructured silica hybrid used for lithium polymer battery. Electrochimica Acta, 2005, 5293-5304.	2.6	37
119	PEO-LiClO4-ZSM5 composite polymer electrolyte (IV): Polarized optical microscopy study. Science in China Series B: Chemistry, 2005, 48, 574.	0.8	O
120	Nanocomposite polymer electrolyte comprising PEO/LiClO4 and solid super acid: effect of sulphated-zirconia on the crystallization kinetics of PEO. Polymer, 2005, 46, 5702-5706.	1.8	53
121	Composite polymer electrolyte doped with mesoporous silica SBA-15 for lithium polymer battery. Solid State Ionics, 2005, 176, 1249-1260.	1.3	91
122	Microporous polymer electrolyte based on PVDF-PEO. Science Bulletin, 2005, 50, 368-370.	1.7	2
123	Deswelling comparison of temperature-sensitive poly(N-isopropylacrylamide) microgels containing functional OH groups with different hydrophilic long side chains. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 3575-3583.	2.4	18
124	Synthesis, characterization, and properties of polysilaethers containing moiety SiH bonds in the side chain. Journal of Polymer Science Part A, 2005, 43, 2476-2482.	2.5	2
125	Microporous polymer electro-lyte based on PVDF-PEO. Science Bulletin, 2005, 50, 368.	1.7	1
126	Conductivities and transport properties of microporous molecular sieves doped composite polymer electrolyte used for lithium polymer battery. New Journal of Chemistry, 2005, 29, 1454.	1.4	20

#	Article	IF	CITATIONS
127	Influences of Permeation of Vanadium Ions through PVDF-g-PSSA Membranes on Performances of Vanadium Redox Flow Batteries. Journal of Physical Chemistry B, 2005, 109, 20310-20314.	1.2	166
128	Synthesis, characterization and properties of diamidodisilanes and azocyclosilane. Science Bulletin, 2005, 50, 1576.	1.7	1
129	Effect of organic-inorganic hybrid P123-em-SBA15 on lithium transport properties of composite polymer electrolyte. Science Bulletin, 2004, 49, 2129.	1.7	0
130	Electrochemistry study on PEO-LiClO4-ZSM5 composite polymer electrolyte. Science Bulletin, 2004, 49, 785.	1.7	1
131	Electrochemistry study on PEO-LiClO4-ZSM5 composite polymer electrolyte. Science Bulletin, 2004, 49, 785-789.	1.7	30
132	Effect of organic-inorganic hybrid P123-em-SBA15 on lithium transport properties of composite polymer electrolyte. Science Bulletin, 2004, 49, 2129-2133.	1.7	1
133	Nanocomposite polymer electrolyte based on Poly(ethylene oxide) and solid super acid for lithium polymer battery. Chemical Physics Letters, 2004, 393, 271-276.	1.2	88
134	Enhanced lithium ion transference number and ionic conductivity of composite polymer electrolyte doped with organic–inorganic hybrid P123@SBA-15. Chemical Physics Letters, 2004, 400, 68-73.	1.2	32
135	Selective Transporting of Lithium Ion by Shape Selective Molecular Sieves ZSM-5 in PEO-Based Composite Polymer Electrolyte. Macromolecules, 2004, 37, 8592-8598.	2.2	52
136	Novel hydrophobically modified temperature-sensitive microgels with tunable volume-phase transition temperature. Materials Letters, 2004, 58, 3400-3404.	1.3	25
137	Selective production of hydrogen by partial oxidation of methanol over Cu/Cr catalysts. Journal of Molecular Catalysis A, 2003, 191, 123-134.	4.8	63
138	Improvement of Cu/Zn-based catalysts by nickel additive in methanol decomposition. Applied Catalysis A: General, 2002, 225, 77-86.	2.2	40
139	Partial Oxidation of Ethanol to Hydrogen over Ni–Fe Catalysts. Catalysis Letters, 2002, 81, 63-68.	1.4	53