
Gustavo Leone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6040912/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nature Reviews Cancer, 2009, 9, 785-797.	12.8	824
2	Role for E2F in Control of Both DNA Replication and Mitotic Functions as Revealed from DNA Microarray Analysis. Molecular and Cellular Biology, 2001, 21, 4684-4699.	1.1	560
3	The E2F1–3 transcription factors are essential for cellular proliferation. Nature, 2001, 414, 457-462.	13.7	545
4	Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature, 2009, 461, 1084-1091.	13.7	475
5	The broken cycle: E2F dysfunction inÂcancer. Nature Reviews Cancer, 2019, 19, 326-338.	12.8	475
6	Myc and Ras collaborate in inducing accumulation of active cyclin E/Cdk2 and E2F. Nature, 1997, 387, 422-426.	13.7	441
7	Direct Evidence for Epithelial-Mesenchymal Transitions in Breast Cancer. Cancer Research, 2008, 68, 937-945.	0.4	329
8	Myc Requires Distinct E2F Activities to Induce S Phase and Apoptosis. Molecular Cell, 2001, 8, 105-113.	4.5	233
9	E2f1–3 switch from activators in progenitor cells to repressors in differentiating cells. Nature, 2009, 462, 930-934.	13.7	208
10	Atypical E2Fs: new players in the E2F transcription factor family. Trends in Cell Biology, 2009, 19, 111-118.	3.6	197
11	Identification and Characterization of E2F7, a Novel Mammalian E2F Family Member Capable of Blocking Cellular Proliferation. Journal of Biological Chemistry, 2003, 278, 42041-42049.	1.6	185
12	Synergistic Function of E2F7 and E2F8 Is Essential for Cell Survival and Embryonic Development. Developmental Cell, 2008, 14, 62-75.	3.1	185
13	Role of the Rb/E2F pathway in cell growth control. , 1997, 173, 233-236.		179
14	Identification of a Novel E2F3 Product Suggests a Mechanism for Determining Specificity of Repression by Rb Proteins. Molecular and Cellular Biology, 2000, 20, 3626-3632.	1.1	164
15	Cloning and Characterization of Mouse E2F8, a Novel Mammalian E2F Family Member Capable of Blocking Cellular Proliferation. Journal of Biological Chemistry, 2005, 280, 18211-18220.	1.6	153
16	Exosome-Derived miR-25-3p and miR-92a-3p Stimulate Liposarcoma Progression. Cancer Research, 2017, 77, 3846-3856.	0.4	141
17	Division and apoptosis of E2f-deficient retinal progenitors. Nature, 2009, 462, 925-929.	13.7	132
18	Canonical and atypical E2Fs regulate the mammalian endocycle. Nature Cell Biology, 2012, 14, 1192-1202.	4.6	130

GUSTAVO LEONE

#	Article	IF	CITATIONS
19	Complex Transcriptional Regulatory Mechanisms Control Expression of the E2F3 Locus. Molecular and Cellular Biology, 2000, 20, 3633-3639.	1.1	125
20	E2F-8: an E2F family member with a similar organization of DNA-binding domains to E2F-7. Oncogene, 2005, 24, 5000-5004.	2.6	106
21	E2F7 and E2F8 promote angiogenesis through transcriptional activation of VEGFA in cooperation with HIF1. EMBO Journal, 2012, 31, 3871-3884.	3.5	103
22	<i>E2f1</i> , <i>E2f2</i> , and <i>E2f3</i> Control E2F Target Expression and Cellular Proliferation via a p53-Dependent Negative Feedback Loop. Molecular and Cellular Biology, 2007, 27, 65-78.	1.1	94
23	Mouse development with a single E2F activator. Nature, 2008, 454, 1137-1141.	13.7	91
24	Dosage-dependent copy number gains in E2f1 and E2f3 drive hepatocellular carcinoma. Journal of Clinical Investigation, 2017, 127, 830-842.	3.9	90
25	Transient ectopic expression of PTEN in thyroid cancer cell lines induces cell cycle arrest and cell type-dependent cell death. Human Molecular Genetics, 2001, 10, 251-258.	1.4	79
26	Inactivation of E2F3 results in centrosome amplification. Cancer Cell, 2003, 3, 333-346.	7.7	75
27	E2f8 mediates tumor suppression in postnatal liver development. Journal of Clinical Investigation, 2016, 126, 2955-2969.	3.9	72
28	<i>E2f3a</i> and <i>E2f3b</i> Contribute to the Control of Cell Proliferation and Mouse Development. Molecular and Cellular Biology, 2009, 29, 414-424.	1.1	70
29	Cyclin F Controls Cell-Cycle Transcriptional Outputs by Directing the Degradation of the Three Activator E2Fs. Molecular Cell, 2019, 74, 1264-1277.e7.	4.5	69
30	E2F3 Is a Mediator of DNA Damage-Induced Apoptosis. Molecular and Cellular Biology, 2010, 30, 524-536.	1.1	67
31	Redeployment of Myc and E2f1–3 drives Rb-deficient cell cycles. Nature Cell Biology, 2015, 17, 1036-1048.	4.6	62
32	Cell proliferation in the absence of E2F1-3. Developmental Biology, 2011, 351, 35-45.	0.9	57
33	Stromal Lkb1 deficiency leads to gastrointestinal tumorigenesis involving the IL-11–JAK/STAT3 pathway. Journal of Clinical Investigation, 2017, 128, 402-414.	3.9	56
34	Specific tumor suppressor function for E2F2 in Myc-induced T cell lymphomagenesis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15400-15405.	3.3	54
35	Stromal PDGFR-α Activation Enhances Matrix Stiffness, Impedes Mammary Ductal Development, and Accelerates Tumor Growth. Neoplasia, 2017, 19, 496-508.	2.3	50
36	Cited2 is required in trophoblasts for correct placental capillary patterning. Developmental Biology, 2014, 392, 62-79.	0.9	48

GUSTAVO LEONE

#	Article	IF	CITATIONS
37	Genetic ablation of Smoothened in pancreatic fibroblasts increases acinar–ductal metaplasia. Genes and Development, 2016, 30, 1943-1955.	2.7	46
38	Two Distinct E2F Transcriptional Modules Drive Cell Cycles and Differentiation. Cell Reports, 2019, 27, 3547-3560.e5.	2.9	41
39	hsa-mir183/EGR1–mediated regulation of E2F1 is required for CML stem/progenitor cell survival. Blood, 2018, 131, 1532-1544.	0.6	40
40	Crosstalk between PKCα and PI3K/AKT Signaling Is Tumor Suppressive in the Endometrium. Cell Reports, 2018, 24, 655-669.	2.9	39
41	PTEN Is a Negative Regulator of NK Cell Cytolytic Function. Journal of Immunology, 2015, 194, 1832-1840.	0.4	37
42	Sex-specific regulation of stress-induced fetal glucocorticoid surge by the mouse placenta. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E109-E120.	1.8	36
43	RNA-binding protein FXR1 drives cMYC translation by recruiting eIF4F complex to the translation start site. Cell Reports, 2021, 37, 109934.	2.9	34
44	Disruption of stromal hedgehog signaling initiates RNF5-mediated proteasomal degradation of PTEN and accelerates pancreatic tumor growth. Life Science Alliance, 2018, 1, e201800190.	1.3	33
45	Stromal Platelet–Derived Growth Factor Receptor-β Signaling Promotes Breast Cancer Metastasis in the Brain. Cancer Research, 2021, 81, 606-618.	0.4	32
46	E2f1–3 Are Critical for Myeloid Development. Journal of Biological Chemistry, 2011, 286, 4783-4795.	1.6	30
47	Noncatalytic <i>PTEN</i> missense mutation predisposes to organ-selective cancer development in vivo. Genes and Development, 2015, 29, 1707-1720.	2.7	29
48	Stromal ETS2 Regulates Chemokine Production and Immune Cell Recruitment during Acinar-to-Ductal Metaplasia. Neoplasia, 2016, 18, 541-552.	2.3	25
49	Discovery of Stromal Regulatory Networks that Suppress Ras-Sensitized Epithelial Cell Proliferation. Developmental Cell, 2017, 41, 392-407.e6.	3.1	25
50	FGFR and PTEN signaling interact during lens development to regulate cell survival. Developmental Biology, 2016, 410, 150-163.	0.9	22
51	Endoreduplication of the mouse genome in the absence of ORC1. Genes and Development, 2018, 32, 978-990.	2.7	22
52	Loss of PTEN Accelerates NKX3.1 Degradation to Promote Prostate Cancer Progression. Cancer Research, 2019, 79, 4124-4134.	0.4	21
53	STAT3 in tumor fibroblasts promotes an immunosuppressive microenvironment in pancreatic cancer. Life Science Alliance, 2022, 5, e202201460.	1.3	19
54	Stromal PTEN determines mammary epithelial response to radiotherapy. Nature Communications, 2018, 9, 2783.	5.8	17

GUSTAVO LEONE

#	Article	IF	CITATIONS
55	Generation of a pancreatic cancer model using a Pdx1-Flp recombinase knock-in allele. PLoS ONE, 2017, 12, e0184984.	1.1	16
56	PTEN in the Stroma. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a036111.	2.9	10
57	Evaluating the efficacy of enzalutamide and the development of resistance in a preclinical mouse model of type-I endometrial carcinoma. Neoplasia, 2020, 22, 484-496.	2.3	7
58	Imaging Mass Spectrometry Reveals Alterations in N-Linked Clycosylation That Are Associated With Histopathological Changes in Nonalcoholic Steatohepatitis in Mouse and Human. Molecular and Cellular Proteomics, 2022, 21, 100225.	2.5	7
59	annoPeak: a web application to annotate and visualize peaks from ChIP-seq/ChIP-exo-seq. Bioinformatics, 2017, 33, 1570-1571.	1.8	6
60	Deep learning tools and modeling to estimate the temporal expression of cell cycle proteins from 2D still images. PLoS Computational Biology, 2022, 18, e1009949.	1.5	6
61	Non-phosphorylatable cyclin D1 mutant potentiates endometrial hyperplasia and drives carcinoma with Pten loss. Oncogene, 2022, 41, 2187-2195.	2.6	4
62	Human Natural Killer (NK) Cells: Differential Expression of Phosphatase and Tensin Homologue Deleted On Chromosome Ten (PTEN) During NK Cell Development Regulates Its Cytolytic Activity Against Leukemic Target Cells. Blood, 2012, 120, 254-254.	0.6	1
63	BSCI-11. STROMAL PLATELET DERIVED GROWTH FACTOR RECEPTOR-β (PDGFRβ) PROMOTES BREAST CANCER BRAIN METASTASIS. Neuro-Oncology Advances, 2019, 1, i3-i3.	0.4	0
64	Abstract PR-013: The splanchnic mesenchyme during fetal development is the major source of pancreatic cancer associated fibroblasts. , 2021, , .		0
65	Origin, activation and heterogeneity of fibroblasts associated with pancreas and breast cancers. Advances in Cancer Research, 2022, 154, 169-201.	1.9	0