Shuo-Qing Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6040715/publications.pdf

Version: 2024-02-01

52 papers 2,601 citations

201575 27 h-index 50 g-index

61 all docs

61 does citations

61 times ranked

2652 citing authors

#	Article	IF	CITATIONS
1	Machine learning prediction of hydrogen atom transfer reactivity in photoredox-mediated C–H functionalization. Organic Chemistry Frontiers, 2021, 8, 6187-6195.	2.3	12
2	Divergent rhodium-catalyzed electrochemical vinylic Câ€"H annulation of acrylamides with alkynes. Nature Communications, 2021, 12, 930.	5.8	48
3	Mechanism and Selectivity Control in Ni- and Pd-Catalyzed Cross-Couplings Involving Carbon–Oxygen Bond Activation. Accounts of Chemical Research, 2021, 54, 2158-2171.	7.6	33
4	An Unconventional <i>trans</i> - <i>exo</i> -Selective Cyclization of Alkyne-Tethered Cyclohexadienones Initiated by Rhodium(III)-Catalyzed C–H Activation via Insertion Relay. CCS Chemistry, 2021, 3, 1582-1595.	4.6	10
5	Understanding the Structureâ€Activity Relationship of Niâ€Catalyzed Amide Câ^'N Bond Activation using Distortion/Interaction Analysis. ChemCatChem, 2021, 13, 3536-3542.	1.8	8
6	Towards Dataâ€Driven Design of Asymmetric Hydrogenation of Olefins: Database and Hierarchical Learning. Angewandte Chemie, 2021, 133, 22986-22993.	1.6	3
7	Towards Dataâ€Driven Design of Asymmetric Hydrogenation of Olefins: Database and Hierarchical Learning. Angewandte Chemie - International Edition, 2021, 60, 22804-22811.	7.2	21
8	Nickel-Catalyzed Domino Cross-Electrophile Coupling Dicarbofunctionalization Reaction To Afford Vinylcyclopropanes. ACS Catalysis, 2021, 11, 14369-14380.	5 . 5	5
9	Predicting Regioselectivity in Radical Câ^'H Functionalization of Heterocycles through Machine Learning. Angewandte Chemie, 2020, 132, 13355-13361.	1.6	14
10	Carboxylate breaks the arene C–H bond <i>via</i> a hydrogen-atom-transfer mechanism in electrochemical cobalt catalysis. Chemical Science, 2020, 11, 5790-5796.	3.7	19
11	Catalytic and Photochemical Strategies to Stabilized Radicals Based on Anomeric Nucleophiles. Journal of the American Chemical Society, 2020, 142, 11102-11113.	6.6	39
12	Diastereoselective olefin amidoacylation <i>via</i> photoredox PCET/nickel-dual catalysis: reaction scope and mechanistic insights. Chemical Science, 2020, 11, 4131-4137.	3.7	37
13	Understanding the mechanism and reactivity of Pd-catalyzed C–P bond metathesis of aryl phosphines: a computational study. Organic and Biomolecular Chemistry, 2020, 18, 5414-5419.	1.5	8
14	Predicting Regioselectivity in Radical Câ^'H Functionalization of Heterocycles through Machine Learning. Angewandte Chemie - International Edition, 2020, 59, 13253-13259.	7.2	65
15	Computation-Guided Development of the "Click―ortho-Quinone Methide Cycloaddition with Improved Kinetics. Organic Letters, 2020, 22, 2920-2924.	2.4	4
16	Computational studies on Ni-catalyzed amide C–N bond activation. Chemical Communications, 2019, 55, 11330-11341.	2.2	37
17	Aluminum-Catalyzed Selective Hydroboration of Alkenes and Alkynylsilanes. Organic Process Research and Development, 2019, 23, 1703-1708.	1.3	18
18	Rhodium(III)-Catalyzed Asymmetric Borylative Cyclization of Cyclohexadienone-Containing 1,6-Dienes: An Experimental and DFT Study. Journal of the American Chemical Society, 2019, 141, 12770-12779.	6.6	52

#	Article	IF	Citations
19	How Solvents Control the Stereospecificity of Ni-Catalyzed Miyaura Borylation of Allylic Pivalates. ACS Catalysis, 2019, 9, 9589-9598.	5.5	18
20	Tuning the LUMO Energy of an Organic Interphase to Stabilize Lithium Metal Batteries. ACS Energy Letters, 2019, 4, 644-650.	8.8	129
21	Unexpected Stability of CO-Coordinated Palladacycle in Bidentate Auxiliary Directed C(sp ³)â€"H Bond Activation: A Combined Experimental and Computational Study. Organometallics, 2019, 38, 2022-2030.	1.1	6
22	C–H Acidity and Arene Nucleophilicity as Orthogonal Control of Chemoselectivity in Dual C–H Bond Activation. Organic Letters, 2019, 21, 2360-2364.	2.4	24
23	A Unified Explanation for Chemoselectivity and Stereospecificity of Ni-Catalyzed Kumada and Cross-Electrophile Coupling Reactions of Benzylic Ethers: A Combined Computational and Experimental Study. Journal of the American Chemical Society, 2019, 141, 5835-5855.	6.6	41
24	Nucleophile-Dependent $\langle i \rangle Z \langle i \rangle / \langle i \rangle E \langle i \rangle$ and Regioselectivity in the Palladium-Catalyzed Asymmetric Allylic Câ \in H Alkylation of 1,4-Dienes. Journal of the American Chemical Society, 2019, 141, 5824-5834.	6.6	89
25	Divergent pathway and reactivity control of intramolecular arene C–H vinylation by vinyl cations. Organic and Biomolecular Chemistry, 2019, 17, 9135-9139.	1.5	1
26	Engineered Cytochrome c-Catalyzed Lactone-Carbene B–H Insertion. Synlett, 2019, 30, 378-382.	1.0	22
27	Enantioselective Intramolecular Desymmetric αâ€Addition of Cyclohexanone to Propiolamide Catalyzed by Sodium L â€Prolinate. Chinese Journal of Chemistry, 2019, 37, 63-70.	2.6	13
28	Mechanism and Origins of Chemo- and Regioselectivities of Pd-Catalyzed Intermolecular Ïf-Bond Exchange between Benzocyclobutenones and Silacyclobutanes: A Computational Study. Organometallics, 2018, 37, 592-602.	1.1	29
29	Copperâ€Catalyzed Enantioselective Markovnikov Protoboration of αâ€Olefins Enabled by a Buttressed Nâ€Heterocyclic Carbene Ligand. Angewandte Chemie, 2018, 130, 1390-1394.	1.6	36
30	Copperâ€Catalyzed Enantioselective Hydroboration of 1,1â€Disubstituted Alkenes: Method Development, Applications and Mechanistic Studies. Asian Journal of Organic Chemistry, 2018, 7, 103-106.	1.3	13
31	Copperâ€Catalyzed Enantioselective Markovnikov Protoboration of αâ€Olefins Enabled by a Buttressed Nâ€Heterocyclic Carbene Ligand. Angewandte Chemie - International Edition, 2018, 57, 1376-1380.	7.2	129
32	Stereoretentive C(<i>sp</i> ³)–S Cross-Coupling. Journal of the American Chemical Society, 2018, 140, 18140-18150.	6.6	55
33	Stepwise versus Concerted Reductive Elimination Mechanisms in the Carbon–lodide Bond Formation of (DPEphos)RhMel ₂ Complex. Organometallics, 2018, 37, 4711-4719.	1.1	7
34	N-Heterocyclic Carbene–Cu-Catalyzed Enantioselective Allenyl Conjugate Addition. Organic Letters, 2018, 20, 6896-6900.	2.4	14
35	Catalytic asymmetric synthesis of chiral trisubstituted heteroaromatic allenes from 1,3-enynes. Communications Chemistry, $2018,1,.$	2.0	43
36	Alternate Heme Ligation Steers Activity and Selectivity in Engineered Cytochrome P450-Catalyzed Carbene-Transfer Reactions. Journal of the American Chemical Society, 2018, 140, 16402-16407.	6.6	106

#	Article	IF	Citations
37	Palladium-Catalyzed Selective Five-Fold Cascade Arylation of the 12-Vertex Monocarborane Anion by B–H Activation. Journal of the American Chemical Society, 2018, 140, 13798-13807.	6.6	79
38	Rhodium-Catalyzed Asymmetric Addition of Organoboronic Acids to Aldimines Using Chiral Spiro Monophosphite-Olefin Ligands: Method Development and Mechanistic Studies. Journal of Organic Chemistry, 2018, 83, 11873-11885.	1.7	25
39	Coulombic-enhanced hetero radical pairing interactions. Nature Communications, 2018, 9, 1961.	5.8	30
40	Mechanisms and Origins of Chemo- and Regioselectivities of Ru(II)-Catalyzed Decarboxylative C–H Alkenylation of Aryl Carboxylic Acids with Alkynes: A Computational Study. Journal of the American Chemical Society, 2017, 139, 7224-7243.	6.6	134
41	Mechanism and Origins of Ligand-Controlled Stereoselectivity of Ni-Catalyzed Suzuki–Miyaura Coupling with Benzylic Esters: AÂComputational Study. Journal of the American Chemical Society, 2017, 139, 12994-13005.	6.6	99
42	N-heterocyclic Carbene–Cu-Catalyzed Enantioselective Conjugate Additions with Alkenylboronic Esters as Nucleophiles. ACS Catalysis, 2017, 7, 5693-5698.	5.5	20
43	Redox-Activated Light-Up Nanomicelle for Precise Imaging-Guided Cancer Therapy and Real-Time Pharmacokinetic Monitoring. ACS Nano, 2016, 10, 11385-11396.	7.3	65
44	Stereoselective alkoxycarbonylation of unactivated C(sp3)â€"H bonds with alkyl chloroformates via Pd(II)/Pd(IV) catalysis. Nature Communications, 2016, 7, 12901.	5.8	66
45	Synthesis of chiral α-hydroxy acids via palladium-catalyzed C(sp ³)–H alkylation of lactic acid. Chemical Communications, 2016, 52, 1915-1918.	2.2	23
46	Palladium-catalyzed C(sp ³)–H arylation of lactic acid: efficient synthesis of chiral β-aryl-α-hydroxy acids. Organic Chemistry Frontiers, 2016, 3, 204-208.	2.3	17
47	Stereoselective Synthesis of Chiral β-Fluoro α-Amino Acids via Pd(II)-Catalyzed Fluorination of Unactivated Methylene C(sp ³)–H Bonds: Scope and Mechanistic Studies. Journal of the American Chemical Society, 2015, 137, 8219-8226.	6.6	183
48	Practical Synthesis of <i>anti</i> â€Î²â€Hydroxyâ€Î±â€Amino Acids by Pd ^{II} â€Catalyzed Sequential C(sp ³)H Functionalization. Chemistry - A European Journal, 2015, 21, 3264-3270.	1.7	53
49	Palladium(0)-catalyzed cyclopropanation of benzyl bromides via C(sp ³)–H bond activation. Chemical Communications, 2014, 50, 3692-3694.	2.2	39
50	A general and practical palladium-catalyzed monoarylation of β-methyl C(sp3)–H of alanine. Chemical Communications, 2014, 50, 13924-13927.	2.2	78
51	Pd(ii)-catalyzed alkoxylation of unactivated C(sp3)–H and C(sp2)–H bonds using a removable directing group: efficient synthesis of alkyl ethers. Chemical Science, 2013, 4, 4187.	3.7	280
52	Pd(ii)-catalyzed alkylation of unactivated C(sp3)â€"H bonds: efficient synthesis of optically active unnatural α-amino acids. Chemical Science, 2013, 4, 3906.	3.7	202