
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6040710/publications.pdf Version: 2024-02-01

LADE HUAM

#	Article	IF	CITATIONS
1	Complexity Management in Engineer-To-Order Industry: A Design-Time Estimation Model for Engineering Processes. Lecture Notes in Mechanical Engineering, 2022, , 636-644.	0.4	0
2	Configuration Systems Applied to the Healthcare Sector for an Enhanced Prescription Process. Lecture Notes in Mechanical Engineering, 2022, , 827-834.	0.4	0
3	Implementation of digital twins in the process industry: A systematic literature review of enablers and barriers. Computers in Industry, 2022, 134, 103558.	9.9	91
4	When reverse supply chain makes financial sense: a study of factors affecting profitability in reverse supply chains. International Journal of Sustainable Engineering, 2022, 15, 35-46.	3.5	1
5	A procedure for reducing stock–keeping unit variety by linking internal and external product variety. CIRP Journal of Manufacturing Science and Technology, 2022, 37, 344-358.	4.5	0
6	An approach for the development and implementation of commissioning service configurators in engineer-to-order companies. Computers in Industry, 2022, 142, 103717.	9.9	1
7	Complexity management in project organisations. Production Engineering, 2021, 15, 361-370.	2.3	2
8	A Framework for Multiple Fire Investigation Using Big Data and Statistical Analysis. Journal of Failure Analysis and Prevention, 2021, 21, 890.	0.9	1
9	The costs and benefits of multistage configuration: A framework and case study. Computers and Industrial Engineering, 2021, 153, 107095.	6.3	10
10	Evaluating the benefits of a computer-aided software engineering tool to develop and document product configuration systems. Computers in Industry, 2021, 128, 103432.	9.9	14
11	Identifying variety-induced complexity cost factors in manufacturing companies and their impact on product profitability. Journal of Manufacturing Systems, 2021, 60, 373-391.	13.9	6
12	A classification of barriers to product variety reduction. CIRP Journal of Manufacturing Science and Technology, 2021, 35, 517-525.	4.5	3
13	Implementation of product information management systems: Identifying the challenges of the scoping phase. Computers in Industry, 2021, 133, 103533.	9.9	3
14	The reduction of product and process complexity based on the quantification of product complexity costs. International Journal of Production Research, 2020, 58, 350-366.	7.5	23
15	Why slow down? Factors affecting speed loss in process manufacturing. International Journal of Advanced Manufacturing Technology, 2020, 106, 2021-2034.	3.0	4
16	Application of design thinking to product-configuration projects. Journal of Manufacturing Technology Management, 2020, 32, 219-241.	6.4	14
17	Scrum versus Rational Unified Process in facing the main challenges of product configuration systems development. Journal of Systems and Software, 2020, 170, 110732.	4.5	25
18	Differential effects of information technology on competitive positioning. Industrial Management and Data Systems, 2020, 120, 1923-1939.	3.7	3

#	Article	IF	CITATIONS
19	Modularisation strategies in the AEC industry: a comparative analysis. Architectural Engineering and Design Management, 2020, 16, 270-292.	1.7	11
20	Developing a Framework for Scoping Digital Twins in the Process Manufacturing Industry. Advances in Transdisciplinary Engineering, 2020, , .	0.1	5
21	Reduction of Product Portfolio Complexity Based on Process Analysis. Advances in Transdisciplinary Engineering, 2020, , .	0.1	0
22	The impact of applying product-modelling techniques in configurator projects. International Journal of Production Research, 2019, 57, 4435-4450.	7.5	7
23	Understanding the impact of non-standard customisations in an engineer-to-order context: A case study. International Journal of Production Research, 2019, 57, 6780-6794.	7.5	12
24	Configuration platform for customisation of design, manufacturing and assembly processes of building façade systems: A building information modelling perspective. Automation in Construction, 2019, 106, 102914.	9.8	31
25	The causes of product configuration project failure. Computers in Industry, 2019, 108, 121-131.	9.9	20
26	Product complexity and operational performance: A systematic literature review. CIRP Journal of Manufacturing Science and Technology, 2019, 25, 69-83.	4.5	56
27	An Operational Tool to Assess Configuration Lifecycle Maturity. , 2019, , .		0
28	Maintenance Costs in the Process Industry: A Literature Review. , 2019, , .		5
29	The Concepts of Modularization in ICT Service Modeling. , 2019, , .		0
30	Can Domain Theory Combined with the Resource-Based View Demonstrate the Missing Link in IT Value Creation?. , 2019, , .		0
31	The costs and benefits of product configuration projects in engineer-to-order companies. Computers in Industry, 2019, 105, 133-142.	9.9	23
32	Configuration lifecycle management maturity model. Computers in Industry, 2019, 106, 30-47.	9.9	10
33	Complementing the Scoping Process of Configuration Projects by Design Thinking. Advances in Transdisciplinary Engineering, 2019, , .	0.1	1
34	Development of a Design-Time Estimation Model for Complex Engineering Processes. Advances in Transdisciplinary Engineering, 2019, , .	0.1	2
35	How to scope configuration projects and manage the knowledge they require. Journal of Knowledge Management, 2018, 22, 982-1014.	5.1	33
36	Using business critical design rules to frame new architecture introduction in multi-architecture portfolios. International Journal of Production Research, 2018, 56, 7313-7329.	7.5	10

#	Article	IF	CITATIONS
37	Configuration Lifecycle Management $\hat{a} \in \mathbb{C}$ Future of Product Configurators. , 2018, , .		1
38	Time Estimation for Product Configuration Systems Projects. , 2018, , .		0
39	Design Science Research: A Suitable Approach to Scope and Research IT Service Catalogs. , 2018, , .		2
40	The Use of Design-science to Define Information Content Requirements for IT Service Catalogs. , 2018, ,		5
41	Challenges of Digital Transformation: The Case of the Non-profit Sector. , 2018, , .		24
42	A Database Administration Tool to Model the Configuration Projects. , 2018, , .		0
43	Scoping a PIM System: A Supporting Framework. , 2018, , .		0
44	The main challenges for manufacturing companies in implementing and utilizing configurators. Computers in Industry, 2018, 100, 196-211.	9.9	33
45	Return on investment from the use of product configuration systems – A case study. Computers in Industry, 2018, 100, 57-69.	9.9	23
46	Product Wheels for Scheduling in the Baking Industry: A Case Study. International Journal of Production Management and Engineering, 2018, 6, 65.	1.5	2
47	Cost of Not Maintaining a Product Configuration System. International Journal of Industrial Engineering and Management, 2018, 9, 205-214.	2.0	2
48	The documentation of product configuration systems: A framework and an IT solution. Advanced Engineering Informatics, 2017, 32, 163-175.	8.0	31
49	Identification of critical technology building blocks. Concurrent Engineering Research and Applications, 2017, 25, 289-302.	3.2	0
50	Impact of product configuration systems on product profitability and costing accuracy. Computers in Industry, 2017, 88, 12-18.	9.9	22
51	Including product features in process redesign. Concurrent Engineering Research and Applications, 2017, 25, 343-359.	3.2	3
52	Modelling production system architectures in the early phases of product development. Concurrent Engineering Research and Applications, 2017, 25, 136-150.	3.2	4
53	Reconfiguring Variety, Profitability, and Postponement for Product Customization with Global Supply Chains. Springer Proceedings in Business and Economics, 2017, , 13-26.	0.3	0
54	A framework for determining product modularity levels. Advances in Mechanical Engineering, 2017, 9, 168781401771942.	1.6	18

#	Article	IF	CITATIONS
55	Product portfolio optimization based on substitution. , 2017, , .		0
56	Usage frequency of product configuration systems relative to integrations and fields of application. , 2017, , .		0
57	Goal-Oriented Data Collection Framework in Configuration Projects. Springer Proceedings in Business and Economics, 2017, , 351-365.	0.3	0
58	Product configuration system and its impact on product's life cycle complexity. , 2016, , .		1
59	Analysis of visual representation techniques for product configuration systems in industrial companies. , 2016, , .		3
60	Development and implementation strategy for the of product configuration systems in engineer-to-order companies. , 2016, , .		0
61	Succeeding in process standardization. Business Process Management Journal, 2016, 22, 1212-1246.	4.2	4
62	Assessing the cost saving potential of shared product architectures. Concurrent Engineering Research and Applications, 2016, 24, 153-163.	3.2	10
63	Business process management and IT management: The missing integration. International Journal of Information Management, 2016, 36, 142-154.	17.5	88
64	Alignment of Configuration and Documentation for Highly Engineered Complex Product Configuration Systems: A Demonstration from a Case Study. , 2015, , .		0
65	Utilizing product configuration systems for supporting the critical parts of the engineering processes. , 2015, , .		1
66	Utilizing platforms in industrialized construction. Construction Innovation, 2015, 15, 84-106.	2.7	25
67	Formal computer-aided product family architecture design for mass customization. Computers in Industry, 2015, 74, 58-70.	9.9	39
68	The cost of customising: assessing the performance of a modular product programme. International Journal of Product Development, 2014, 19, 214.	0.2	3
69	The Use of Modelling Methods for Product Configuration in Industrial Applications. Lecture Notes in Production Engineering, 2014, , 529-539.	0.4	1
70	Rethinking the Business Model in Construction by the Use of Off-Site System Deliverance: Case of the Shaft Project. Journal of Architectural Engineering, 2013, 19, 279-287.	1.6	7
71	Reducing variety in product solution spaces of engineer-to-order companies: the case of Novenco A/S. International Journal of Product Development, 2013, 18, 531.	0.2	16
72	Modularization in the Construction Industry Using a Top-Down Approach. Open Construction and Building Technology Journal, 2013, 7, 88-98.	0.7	15

#	Article	IF	CITATIONS
73	Stepwise Modularization in the Construction Industry Using a Bottom-Up Approach. Open Construction and Building Technology Journal, 2013, 7, 99-107.	0.7	11
74	Using a Configuration System to Design Toilets and Place Installation Shafts. Open Construction and Building Technology Journal, 2013, 7, 158-169.	0.7	2
75	Definition and evaluation of product configurator development strategies. Computers in Industry, 2012, 63, 471-481.	9.9	55
76	Analyzing the Accuracy of Calculations When Scoping Product Configuration Projects. Lecture Notes in Computer Science, 2012, , 331-342.	1.3	0
77	Optimizing the order processing of customized products using product configuration. Production Engineering, 2011, 5, 595-604.	2.3	11
78	Efficient onâ€site construction: learning points from a German platform for housing. Construction Innovation, 2011, 11, 338-355.	2.7	52
79	The impact of product configurators on lead times in engineering-oriented companies. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 2011, 25, 197-206.	1.1	35
80	A layout technique for class diagrams to be used in product configuration projects. Computers in Industry, 2010, 61, 409-418.	9.9	19
81	CRC cards to support the development and maintenance of product configuration systems. International Journal of Mass Customisation, 2009, 3, 38.	1.2	5
82	Product Customization. , 2008, , .		12
83	Modelling and visualising modular product architectures for mass customisation. International Journal of Mass Customisation, 2008, 2, 216.	1.2	8
84	Implementing a product platform in 35 man-days: the visual thinking approach. International Journal of Mass Customisation, 2008, 2, 240.	1.2	3
85	The modelling techniques of a documentation system that supports the development and maintenance of product configuration systems. International Journal of Mass Customisation, 2007, 2, 1.	1.2	17
86	Industrializing Engineering Work: Challenges Associated with the Implementation of Product Models. , 2007, , .		1
87	An approach for the development of visual configuration systems. Computers and Industrial Engineering, 2007, 53, 401-419.	6.3	16
88	Mass customisation in the electronics industry: based on modular products and product configuration. International Journal of Mass Customisation, 2006, 1, 410.	1.2	35
89	Mass customisation of process plants. International Journal of Mass Customisation, 2006, 1, 445.	1.2	23
90	Improving the quotation process with product configuration. Computers in Industry, 2006, 57, 607-621.	9.9	55

#	Article	IF	CITATIONS
91	Reengineering of the quotation process: application of knowledge based systems. Business Process Management Journal, 2004, 10, 200-213.	4.2	25
92	CRC cards for product modelling. Computers in Industry, 2003, 50, 57-70.	9.9	21
93	A procedure for the application of product modelling. International Journal of Production Research, 2001, 39, 873-885.	7.5	14
94	A procedure for building product models. Robotics and Computer-Integrated Manufacturing, 1999, 15, 77-87.	9.9	26
95	The Rulers Factory — a tool for learning product modeling techniques. Computers and Industrial Engineering, 1998, 35, 29-32.	6.3	4
96	Reâ€engineering the specification process. Business Process Management Journal, 1998, 4, 25-43.	4.2	17
97	Reâ€engineering caused by ISO 9000 certification. Business Process Management Journal, 1997, 3, 192-204.	4.2	5
98	Mass Customisation and Personalisation in Architecture and Construction. , 0, , .		18
99	Identifying profitable reference architectures in an engineer-to-order context. International Journal of Production Research, 0, , 1-15.	7.5	3