Justin R Caram

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/60407/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vibronic coherences in light harvesting nanotubes: unravelling the role of dark states. Journal of Materials Chemistry C, 2022, 10, 7216-7226.	2.7	8
2	A Chirality-Based Quantum Leap. ACS Nano, 2022, 16, 4989-5035.	7.3	74
3	Bridging the gap between H- and J-aggregates: Classification and supramolecular tunability for excitonic band structures in two-dimensional molecular aggregates. Chemical Physics Reviews, 2022, 3, .	2.6	17
4	Mesoscale Quantum-Confined Semiconductor Nanoplatelets through Seeded Growth. Chemistry of Materials, 2022, 34, 6048-6056.	3.2	3
5	Bethe–Salpeter equation spectra for very large systems. Journal of Chemical Physics, 2022, 157, .	1.2	4
6	Surface chemical trapping of optical cycling centers. Physical Chemistry Chemical Physics, 2021, 23, 211-218.	1.3	5
7	Franck-Condon Tuning of Optical Cycling Centers by Organic Functionalization. Physical Review Letters, 2021, 126, 123002.	2.9	26
8	Optical Cycling Functionalization of Arenes. Journal of Physical Chemistry Letters, 2021, 12, 3989-3995.	2.1	20
9	Dielectric Screening Modulates Semiconductor Nanoplatelet Excitons. Journal of Physical Chemistry Letters, 2021, 12, 4958-4964.	2.1	9
10	Bright Chromenylium Polymethine Dyes Enable Fast, Four-Color <i>In Vivo</i> Imaging with Shortwave Infrared Detection. Journal of the American Chemical Society, 2021, 143, 6836-6846.	6.6	98
11	Establishing design principles for emissive organic SWIR chromophores from energy gap laws. CheM, 2021, 7, 3359-3376.	5.8	48
12	Large-Area Synthesis and Patterning of All-Inorganic Lead Halide Perovskite Thin Films and Heterostructures. Nano Letters, 2021, 21, 1454-1460.	4.5	27
13	Approaching the intrinsic exciton physics limit in two-dimensional semiconductor diodes. Nature, 2021, 599, 404-410.	13.7	57
14	Stochastically Realized Observables for Excitonic Molecular Aggregates. Journal of Physical Chemistry A, 2020, 124, 10111-10120.	1.1	2
15	Thermodynamic Control over Molecular Aggregate Assembly Enables Tunable Excitonic Properties across the Visible and Near-Infrared. Journal of Physical Chemistry Letters, 2020, 11, 8026-8033.	2.1	17
16	Silicon incorporation in polymethine dyes. Chemical Communications, 2020, 56, 6110-6113.	2.2	17
17	A molecular boron cluster-based chromophore with dual emission. Dalton Transactions, 2020, 49, 16245-16251.	1.6	15
18	Mercury Chalcogenide Nanoplatelet–Quantum Dot Heterostructures as a New Class of Continuously Tunable Bright Shortwave Infrared Emitters. Journal of Physical Chemistry Letters, 2020, 11, 3473-3480.	2.1	22

JUSTIN R CARAM

#	Article	IF	CITATIONS
19	Single Nanocrystal Spectroscopy of Shortwave Infrared Emitters. ACS Nano, 2019, 13, 1042-1049.	7.3	16
20	Design Principles for Two-Dimensional Molecular Aggregates Using Kasha's Model: Tunable Photophysics in Near and Short-Wave Infrared. Journal of Physical Chemistry C, 2019, 123, 18702-18710.	1.5	31
21	Decay-Associated Fourier Spectroscopy: Visible to Shortwave Infrared Time-Resolved Photoluminescence Spectra. Journal of Physical Chemistry A, 2019, 123, 6792-6798.	1.1	7
22	Generalized Kasha's Model: T-Dependent Spectroscopy Reveals Short-Range Structures of 2D Excitonic Systems. CheM, 2019, 5, 3135-3150.	5.8	20
23	Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4465-4470.	3.3	498
24	Correlated Protein Environments Drive Quantum Coherence Lifetimes in Photosynthetic Pigment-Protein Complexes. CheM, 2018, 4, 138-149.	5.8	45
25	Photochemical Control of Exciton Superradiance in Light-Harvesting Nanotubes. ACS Nano, 2018, 12, 4556-4564.	7.3	34
26	Multiexciton Lifetimes Reveal Triexciton Emission Pathway in CdSe Nanocrystals. Nano Letters, 2018, 18, 5153-5158.	4.5	27
27	Understanding the influence of disorder on the exciton dynamics and energy transfer in Zn-phthalocyanine H-aggregates. Physical Chemistry Chemical Physics, 2018, 20, 22331-22341.	1.3	9
28	Flavylium Polymethine Fluorophores for Near―and Shortwave Infrared Imaging. Angewandte Chemie, 2017, 129, 13306-13309.	1.6	47
29	Flavylium Polymethine Fluorophores for Near―and Shortwave Infrared Imaging. Angewandte Chemie - International Edition, 2017, 56, 13126-13129.	7.2	301
30	Near-Infrared Quantum Dot Emission Enhanced by Stabilized Self-Assembled J-Aggregate Antennas. Nano Letters, 2017, 17, 7665-7674.	4.5	42
31	Extracting the average single-molecule biexciton photoluminescence lifetime from a solution of chromophores. Optics Letters, 2016, 41, 4823.	1.7	8
32	Room-Temperature Micron-Scale Exciton Migration in a Stabilized Emissive Molecular Aggregate. Nano Letters, 2016, 16, 6808-6815.	4.5	94
33	PbS Nanocrystal Emission Is Governed by Multiple Emissive States. Nano Letters, 2016, 16, 6070-6077.	4.5	71
34	Slow-Injection Growth of Seeded CdSe/CdS Nanorods with Unity Fluorescence Quantum Yield and Complete Shell to Core Energy Transfer. ACS Nano, 2016, 10, 3295-3301.	7.3	92
35	Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy. Journal of Chemical Physics, 2014, 140, 084701.	1.2	62
36	Persistent Interexcitonic Quantum Coherence in CdSe Quantum Dots. Journal of Physical Chemistry Letters, 2014, 5, 196-204.	2.1	64

JUSTIN R CARAM

#	Article	IF	CITATIONS
37	Dispersion-free continuum two-dimensional electronic spectrometer. Applied Optics, 2014, 53, 1909.	0.9	39
38	Energy Transfer Observed in Live Cells Using Two-Dimensional Electronic Spectroscopy. Journal of Physical Chemistry Letters, 2013, 4, 3636-3640.	2.1	34
39	Signatures of correlated excitonic dynamics in two-dimensional spectroscopy of the Fenna-Matthew-Olson photosynthetic complex. Journal of Chemical Physics, 2012, 136, 104505.	1.2	24
40	Two-dimensional electronic spectroscopy of bacteriochlorophyll <i>a</i> in solution: Elucidating the coherence dynamics of the Fenna-Matthews-Olson complex using its chromophore as a control. Journal of Chemical Physics, 2012, 137, 125101.	1.2	39
41	Excited and ground state vibrational dynamics revealed by two-dimensional electronic spectroscopy. Journal of Chemical Physics, 2012, 137, 024507.	1.2	38
42	Towards a coherent picture of excitonic coherence in the Fenna–Matthews–Olson complex. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 154013.	0.6	29
43	Extracting dynamics of excitonic coherences in congested spectra of photosynthetic light harvesting antenna complexes. Faraday Discussions, 2011, 153, 93.	1.6	29
44	Direct evidence of quantum transport in photosynthetic light-harvesting complexes. Proceedings of the United States of America, 2011, 108, 20908-20912.	3.3	203
45	Dynamics of electronic dephasing in the Fenna–Matthews–Olson complex. New Journal of Physics, 2010, 12, 065042.	1.2	50
46	Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12766-12770.	3.3	886
47	Benchmarking the dynamic luminescent properties and UV stability of B18H22-based materials. Dalton Transactions, 0, , .	1.6	6