Regina C M De Paula

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6040575/publications.pdf

Version: 2024-02-01

66315 98753 5,197 110 42 67 citations h-index g-index papers 111 111 111 5368 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Isolation and characterization of soluble sulfated polysaccharide from the red seaweed Gracilaria cornea. Carbohydrate Polymers, 2002, 49, 491-498.	5.1	258
2	Chitosan/cashew gum nanogels for essential oil encapsulation. Carbohydrate Polymers, 2012, 89, 1277-1282.	5.1	197
3	Alginate/cashew gum nanoparticles for essential oil encapsulation. Colloids and Surfaces B: Biointerfaces, 2014, 113, 146-151.	2.5	182
4	Composition and rheological properties of cashew tree gum, the exudate polysaccharide from Anacardium occidentale L. Carbohydrate Polymers, 1995, 26, 177-181.	5.1	159
5	Structural characterization of cold extracted fraction of soluble sulfated polysaccharide from red seaweed Gracilaria birdiae. Carbohydrate Polymers, 2008, 71, 559-565.	5.1	158
6	Characterization of Anacardium occidentale exudate polysaccharide. Polymer International, 1998, 45, 27-35.	1.6	154
7	Extraction and physicochemical characterization of Sargassum vulgare alginate from Brazil. Carbohydrate Research, 2007, 342, 2067-2074.	1.1	152
8	Graft copolymerisation of acrylamide onto cashew gum. European Polymer Journal, 2007, 43, 2620-2629.	2.6	150
9	Carboxymethylation of cashew tree exudate polysaccharide. Carbohydrate Polymers, 2004, 58, 163-171.	5.1	144
10	Structural characterization of polysaccharide obtained from red seaweed Gracilaria caudata (J) Tj ETQq0 0 0 rgB	T /Qverloc 5.1	k 10 Tf 50 382
11	Amylose contents, rheological properties and gelatinization kinetics of yam (Dioscorea alata) and cassava (Manihot utilissima) starches. Carbohydrate Polymers, 2004, 55, 3-8.	5.1	104
12	Preparation and characterization of chitosan/cashew gum beads loaded with Lippia sidoides essential oil. Materials Science and Engineering C, 2011, 31, 173-178.	3.8	102
13	Low viscosity hydrogel of guar gum: Preparation and physicochemical characterization. International Journal of Biological Macromolecules, 2005, 37, 99-104.	3.6	86
14	Self-assembled nanoparticles of acetylated cashew gum: Characterization and evaluation as potential drug carrier. Carbohydrate Polymers, 2015, 117, 610-615.	5.1	85
15	Cashew gum and inulin: New alternative for ginger essential oil microencapsulation. Carbohydrate Polymers, 2016, 153, 133-142.	5.1	85
16	Effects of a sulfated polysaccharide isolated from the red seaweed Solieria filiformis on models of nociception and inflammation. Carbohydrate Polymers, 2011, 86, 1207-1215.	5.1	81
17	Antimicrobial effect of a crude sulfated polysaccharide from the red seaweed Gracilaria ornata. Brazilian Archives of Biology and Technology, 2012, 55, 171-181.	0.5	78
18	A new heterofunctional support for enzyme immobilization: PEI functionalized Fe3O4 MNPs activated with divinyl sulfone. Application in the immobilization of lipase from Thermomyces lanuginosus. Enzyme and Microbial Technology, 2020, 138, 109560.	1.6	76

#	Article	IF	CITATIONS
19	Dynamic rheological study of Sterculia striata and karaya polysaccharides in aqueous solution. Food Hydrocolloids, 2005, 19, 861-867.	5.6	75
20	Composition and rheological properties of Albizia lebbeck gum exudate. Carbohydrate Polymers, 2001, 44, 133-139.	5.1	73
21	Purification of guar gum for biological applications. International Journal of Biological Macromolecules, 2007, 41, 324-331.	3.6	73
22	Chemical structure and anti-inflammatory effect of polysaccharide extracted from Morinda citrifolia Linn (Noni). Carbohydrate Polymers, 2018, 197, 515-523.	5.1	69
23	Sterculia striata exudate polysaccharide: characterization, rheological properties and comparison withSterculia urens(karaya) polysaccharide. Polymer International, 2004, 53, 1025-1032.	1.6	68
24	Isolation and characterization of galactomannan from Dimorphandra gardneriana Tul. seeds as a potential guar gum substitute. Food Hydrocolloids, 2009, 23, 880-885.	5.6	68
25	A novel antioxidant sulfated polysaccharide from the algae Gracilaria caudata: In vitro and in vivo activities. Food Hydrocolloids, 2019, 90, 28-34.	5.6	65
26	Chitosan/carboxymethyl cashew gum polyelectrolyte complex: synthesis and thermal stability. European Polymer Journal, 2005, 41, 2726-2733.	2.6	64
27	Characterisation of partially hydrolysed galactomannan from Caesalpinia pulcherrima seeds as a potential dietary fibre. Food Hydrocolloids, 2014, 35, 512-521.	5.6	64
28	Sulfated chitosan as tear substitute with no antimicrobial activity. Carbohydrate Polymers, 2013, 91, 92-99.	5.1	63
29	Chemical and X-ray analyses of five brands of dental gutta-percha cone. International Endodontic Journal, 2003, 36, 302-307.	2.3	61
30	Characterization of crosslinked cashew gum derivatives. Carbohydrate Polymers, 2006, 66, 16-26.	5.1	60
31	Pectin from <i>Passiflora edulis</i> Shows Anti-inflammatory Action as well as Hypoglycemic and Hypotriglyceridemic Properties in Diabetic Rats. Journal of Medicinal Food, 2011, 14, 1118-1126.	0.8	57
32	Sulfated polysaccharide fraction from marine algae Solieria filiformis: Structural characterization, gastroprotective and antioxidant effects. Carbohydrate Polymers, 2016, 152, 140-148.	5.1	57
33	Effect of mono and divalent salts on gelation of native, Na and deacetylated Sterculia striata and Sterculia urens polysaccharide gels. Carbohydrate Polymers, 2003, 54, 229-236.	5.1	54
34	Application of cashew tree gum on the production and stability of spray-dried fish oil. Food Chemistry, 2017, 221, 1522-1529.	4.2	54
35	Acetylated cashew gum-based nanoparticles for transdermal delivery of diclofenac diethyl amine. Carbohydrate Polymers, 2016, 143, 254-261.	5.1	53
36	PolissacarÃdeos da biodiversidade brasileira: uma oportunidade de transformar conhecimento em valor econômico. Quimica Nova, 2009, 32, 649-660.	0.3	51

#	Article	IF	CITATIONS
37	Lippia sidoides essential oil encapsulation by angico gum/chitosan nanoparticles. Journal of the Brazilian Chemical Society, 2010, 21, 2359-2366.	0.6	51
38	Polysaccharide isolated from Passiflora edulis: Characterization and antitumor properties. Carbohydrate Polymers, 2012, 87, 139-145.	5.1	47
39	Hydrophobization of cashew gum by acetylation mechanism and amphotericin B encapsulation. International Journal of Biological Macromolecules, 2018, 108, 523-530.	3.6	47
40	Chitosan-coated pectin beads: Characterization and in vitro release of mangiferin. Food Hydrocolloids, 2009, 23, 2278-2286.	5.6	44
41	Synthesis and characterization of cashew gum/acrylic acid nanoparticles. Materials Science and Engineering C, 2009, 29, 437-441.	3.8	44
42	Sulfated polysaccharide from the marine algae Hypnea musciformis inhibits TNBS-induced intestinal damage in rats. Carbohydrate Polymers, 2016, 151, 957-964.	5.1	44
43	Polysaccharide isolated from Agardhiella ramosissima: Chemical structure and anti-inflammation activity. Carbohydrate Polymers, 2014, 99, 59-67.	5.1	43
44	Banana (Musa sp. cv. Pacovan) Pseudostem Fibers are Composed of Varying Lignocellulosic Composition throughout the Diameter. BioResources, 2014, 9, .	0.5	41
45	Contribution of the cashew gum (Anacardium occidentale L.) for development of layer-by-layer films with potential application in nanobiomedical devices. Materials Science and Engineering C, 2012, 32, 1588-1593.	3.8	40
46	Synthesis and characterization of non-toxic and thermo-sensitive poly(N) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 Carbohydrate Polymers, 2016, 154, 77-85.	387 Td (-i: 5.1	sopropylacryla 40
47	Oxidation of cashew tree gum exudate polysaccharide with TEMPO reagent. Journal of the Brazilian Chemical Society, 2007, 18, 85-92.	0.6	38
48	Polysaccharides derived from Morinda citrifolia Linn reduce inflammatory markers during experimental colitis. Journal of Ethnopharmacology, 2020, 248, 112303.	2.0	38
49	Brazilian gutta-percha points: Part I: chemical composition and X-ray diffraction analysis. Brazilian Oral Research, 2005, 19, 193-197.	0.6	37
50	Sulfated polysaccharide from the red algae Gelidiella acerosa: Anticoagulant, antiplatelet and antithrombotic effects. International Journal of Biological Macromolecules, 2020, 159, 415-421.	3.6	37
51	Swelling studies of chitosan/cashew nut gum physical gels. Carbohydrate Polymers, 2002, 48, 313-318.	5.1	36
52	Polysaccharide fraction isolated from <i>P assiflora edulis</i> inhibits the inflammatory response and the oxidative stress in mice. Journal of Pharmacy and Pharmacology, 2015, 67, 1017-1027.	1.2	36
53	Pickering emulsion stabilized by cashew gum- poly-l-lactide copolymer nanoparticles: Synthesis, characterization and amphotericin B encapsulation. Colloids and Surfaces B: Biointerfaces, 2018, 164, 201-209.	2.5	36
54	Preparation and characterization of a chemically sulfated cashew gum polysaccharide. Journal of the Brazilian Chemical Society, 2011, 22, 1953-1960.	0.6	35

#	Article	IF	CITATIONS
55	Microspheres of chitosan/carboxymethyl cashew gum (CH/CMCG): Effect of chitosan molar mass and CMCG degree of substitution on the swelling and BSA release. Carbohydrate Polymers, 2009, 77, 217-222.	5.1	33
56	Composition and effect of salt on rheological and gelation properties of Enterolobium contortisilliquum gum exudate. International Journal of Biological Macromolecules, 2001, 29, 35-44.	3 . 6	32
57	3-Benzoxazol-2-yl-7-(N,N-diethylamino)-chromen-2-one as a fluorescence probe for the investigation of micellar microenvironments. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 165, 109-114.	2.0	32
58	Novel and Fast Microwave-Assisted Synthesis of Carbon Quantum Dots from Raw Cashew Gum. Journal of the Brazilian Chemical Society, 2015 , , .	0.6	31
59	Chitosan/Sterculia striata polysaccharides nanocomplex as a potential chloroquine drug release device. International Journal of Biological Macromolecules, 2016, 88, 244-253.	3. 6	31
60	Acetylated cashew gum-based nanoparticles for the incorporation of alkaloid epiisopiloturine. International Journal of Biological Macromolecules, 2019, 128, 965-972.	3.6	31
61	Anticoagulant activity of a sulfated polysaccharide isolated from the green seaweed Caulerpa cupressoides. Brazilian Archives of Biology and Technology, 2011, 54, 691-700.	0.5	30
62	Microwave-initiated rapid synthesis of phthalated cashew gum for drug delivery systems. Carbohydrate Polymers, 2021, 254, 117226.	5.1	30
63	Nanocapsules of Sterculia striata acetylated polysaccharide as a potential monomeric amphotericin B delivery matrix. International Journal of Biological Macromolecules, 2019, 130, 655-663.	3. 6	28
64	Antibacterial application of natural and carboxymethylated cashew gum-based silver nanoparticles produced by microwave-assisted synthesis. Carbohydrate Polymers, 2020, 241, 115260.	5.1	27
65	The influence of thermal treatment and operational conditions on xanthan produced by X. arboricola pv pruni strain 106. Carbohydrate Polymers, 2009, 75, 262-268.	5.1	26
66	Development of amphotericin B-loaded propionate Sterculia striata polysaccharide nanocarrier. International Journal of Biological Macromolecules, 2020, 146, 1133-1141.	3.6	25
67	Polysaccharides isolated from Digenea simplex inhibit inflammatory and nociceptive responses. Carbohydrate Polymers, 2014, 108, 17-25.	5.1	24
68	Esferas (beads) de alginato como agente encapsulante de \tilde{A}^3 leo de croton zehntneri Pax et Hoffm. Polimeros, 2010, 20, 112-120.	0.2	23
69	Oxidized Cashew Gum Scaffolds for Tissue Engineering. Macromolecular Materials and Engineering, 2019, 304, 1800574.	1.7	23
70	Protective effect of cashew gum nanoparticles on natural larvicide from <i>Moringa oleifera</i> seeds. Journal of Applied Polymer Science, 2012, 124, 1778-1784.	1.3	21
71	Pickering emulsions stabilized with cashew gum nanoparticles as indomethacin carrier. International Journal of Biological Macromolecules, 2019, 132, 534-540.	3.6	21
72	Self-assembling cashew gum-graft-polylactide copolymer nanoparticles as a potential amphotericin B delivery matrix. International Journal of Biological Macromolecules, 2020, 152, 492-502.	3 . 6	21

#	Article	IF	CITATIONS
73	Degradation of <i>trans</i> àêpolyisoprene after root filling with thermoplasticized techniques. International Endodontic Journal, 2008, 41, 296-302.	2.3	20
74	Polysaccharide-based nanoparticles formation by polyeletrolyte complexation of carboxymethylated cashew gum and chitosan. Journal of Materials Science, 2010, 45, 5605-5610.	1.7	20
75	Matrix Effect on the Spray Drying Nanoencapsulation of Lippia sidoides Essential Oil in Chitosan-Native Gum Blends. Planta Medica, 2017, 83, 392-397.	0.7	20
76	Characterization of Anadenanthera macrocarpa exudate polysaccharide. Polymer International, 1997, 44, 55-60.	1.6	19
77	Reacetylated chitosan/cashew gum gel: Preliminary study for potential utilization as drug release matrix. Journal of Applied Polymer Science, 2006, 99, 326-334.	1.3	19
78	Swelling and release kinetics of larvicide-containing chitosan/cashew gum beads. Journal of Applied Polymer Science, 2006, 102, 395-400.	1.3	19
79	The potential of cashew gum functionalization as building blocks for layer-by-layer films. Carbohydrate Polymers, 2017, 174, 849-857.	5.1	19
80	Alginate/cashew gum floating bead as a matrix for larvicide release. Materials Science and Engineering C, 2012, 32, 1421-1427.	3.8	18
81	Chitosan-based hydrogel for magnetic particle coating. Reactive and Functional Polymers, 2020, 146, 104431.	2.0	18
82	Structural characteristics are crucial to the benefits of guar gum in experimental osteoarthritis. Carbohydrate Polymers, 2016, 150, 392-399.	5.1	17
83	Properties of spray-dried fish oil with different carbohydrates as carriers. Journal of Food Science and Technology, 2017, 54, 4181-4188.	1.4	17
84	In vivo aging of gutta-percha dental cone. Journal of Applied Polymer Science, 2006, 100, 4082-4088.	1.3	16
85	Formation of cashew gum thin films onto silicon wafers or amino-terminated surfaces and the immobilization of Concanavalin A on them. Carbohydrate Polymers, 2007, 69, 522-529.	5.1	16
86	Eco-friendly synthesis of an alkyl chitosan derivative. International Journal of Biological Macromolecules, 2020, 163, 1591-1598.	3.6	16
87	Poly(ε-caprolactone) grafted cashew gum nanoparticles as an epirubicin delivery system. International Journal of Biological Macromolecules, 2021, 179, 314-323.	3.6	16
88	Effect of the oxidation level on the thermogravimetric kinetics of an oxidized galactoxyloglucan from Hymenaea courbaril (Jatob $ ilde{A}_i$) seeds. Thermochimica Acta, 2004, 409, 41-47.	1.2	15
89	Effect of solvent on the adsorption behavior and on the surface properties of Sterculia striata polysaccharide. Carbohydrate Polymers, 2010, 81, 284-290.	5.1	15
90	Chemically sulfated galactomannan from Dimorphandra gardneriana seed: Characterization and toxicity evaluation. Carbohydrate Polymers, 2014, 101, 1013-1017.	5.1	15

#	Article	IF	CITATIONS
91	Structural features and inactivation of coagulation proteases of a sulfated polysaccharidic fraction from <i>Caulerpa cupressoides</i> var. <i>lycopodium</i> (Caulerpaceae, Chlorophyta) doi: 10.4025/actascitechnol.v35i4.16709. Acta Scientiarum - Technology, 2013, 35, .	0.4	14
92	Degradation of trans-polyisoprene over time following the analysis of root fillings removed during conventional retreatment. International Endodontic Journal, 2007, 40, 25-30.	2.3	13
93	Chitosan/"angico―gum nanoparticles: Synthesis and characterization. Materials Science and Engineering C, 2009, 29, 448-451.	3.8	12
94	Chemical composition and thermal behavior of five brands of thermoplasticized gutta-percha. European Journal of Dentistry, 2013, 07, 201-206.	0.8	12
95	Anti-proliferative profile of Anacardium occidentale polysaccharide and characterization by AFM. International Journal of Biological Macromolecules, 2020, 156, 981-987.	3.6	12
96	Dual responsive dextran-graft-poly (N-isopropylacrylamide)/doxorubicin prodrug via Schiff base reaction. International Journal of Biological Macromolecules, 2021, 185, 390-402.	3.6	11
97	Spondias purpurea Exudate polysaccharide as affinity matrix for the isolation of a galactose-binding-lectin. Carbohydrate Polymers, 2007, 70, 369-377.	5.1	10
98	Effect of a crude sulfated polysaccharide from Halymenia floresia (Rhodophyta) on gastrointestinal smooth muscle contractility. Brazilian Archives of Biology and Technology, 2011, 54, 907-916.	0.5	10
99	Influence of galactomannan molar mass on particle size galactomannan-grafted-poly-N-isopropylacrylamide copolymers. International Journal of Biological Macromolecules, 2020, 156, 446-453.	3.6	10
100	Eco-friendly synthesis of phthalate angico gum towards nanoparticles engineering using Quality by Design (QbD) approach. International Journal of Biological Macromolecules, 2021, 190, 801-809.	3.6	10
101	Synthesis and characterization of carboxymethylated red angico (Anadenanthera macrocarpa) exudate polysaccharide. Journal of Applied Polymer Science, 2007, 103, 2985-2991.	1.3	9
102	Polysaccharide based Copolymers as Supramolecular Systems in Biomedical Applications. Current Drug Targets, 2015, 16, 1591-1605.	1.0	9
103	Ozonation of Unstretched Natural Rubber: Part I. Effect of Film Thickness. Rubber Chemistry and Technology, 2001, 74, 57-68.	0.6	8
104	Protective effect against gastric mucosa injury of a sulfated agaran from Acanthophora spicifera. Carbohydrate Polymers, 2021, 261, 117829.	5.1	8
105	Viscoelásticos oftálmicos: comparação entre os comerciais e formulações de galactomanana de Dimorphandra gardneriana. Quimica Nova, 2010, 33, 1709-1713.	0.3	6
106	Poly(N-isopropylacrylamide)/galactomannan from Delonix regia seed thermal responsive graft copolymer via Schiff base reaction. International Journal of Biological Macromolecules, 2021, 166, 144-154.	3.6	5
107	Efeito da modificação quÃmica na solubilidade e intumescimento de microesferas à base de goma do cajueiro carboximetilada e quitosana. Polimeros, 2015, 25, 31-39.	0.2	4
108	Thermal responsive poly-N-isopropylacrylamide/galactomannan copolymer nanoparticles as a potential amphotericin delivery carrier. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100126.	1.6	4

#	Article	lF	CITATIONS
109	Induction of defense in apples by sulfated and deacetylated chich $ ilde{A}_i$ gum. Polimeros, 2021, 31, .	0.2	O
110	Study of the effect of solvent on acetylate cashew gum-based nanoparticles properties and antimicrobial activity. Revista Materia, 2020, 25, .	0.1	0