
Kadir Aslan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6040566/publications.pdf Version: 2024-02-01

Κλριρ ΔειλΝ

#	Article	IF	CITATIONS
1	Toward automated identification and quantification of meso-scale damage modes in plain weave glass/epoxy composite laminates. International Journal of Damage Mechanics, 2020, 29, 831-848.	4.2	5
2	N-Benzoyl-S-(undecyl)-dithiocarbamate: Synthesis, characterization, X-ray single crystal structure, thermal behavior and computational studies. Journal of Molecular Structure, 2020, 1203, 127414.	3.6	4
3	Impact of Zero-Valent Iron Nanoparticles on <i>Fremyella diplosiphon</i> Transesterified Lipids and Fatty Acid Methyl Esters. ACS Omega, 2020, 5, 12166-12173.	3.5	9
4	Nanoparticle-Mediated Impact on Growth and Fatty Acid Methyl Ester Composition in the Cyanobacterium Fremyella diplosiphon. Bioenergy Research, 2019, 12, 409-418.	3.9	11
5	Metal-Assisted and Microwave-Accelerated Decrystallization of Pseudo-Tophus in Synthetic Human Joint Models. ACS Omega, 2019, 4, 4417-4428.	3.5	2
6	Assessment and quantification of ballistic impact damage of a single-layer woven fabric composite. International Journal of Damage Mechanics, 2019, 28, 249-269.	4.2	15
7	Rapid Sensing of Biological and Environmental Analytes Using Microwave-Accelerated Bioassays and a MATLAB Application. Nano Biomedicine and Engineering, 2019, 11, 111-123.	0.9	2
8	Ballistic Impact Experiments and Quantitative Assessments of Mesoscale Damage Modes in a Single-Layer Woven Composite. Conference Proceedings of the Society for Experimental Mechanics, 2019, , 9-17.	0.5	1
9	Individually grown cobalt nanowires as magnetic force microscopy probes. Applied Physics Letters, 2018, 112, 092401.	3.3	10
10	Mesoscale ballistic damage mechanisms of a single-layer woven glass/epoxy composite. International Journal of Impact Engineering, 2018, 113, 118-131.	5.0	29
11	Effect of Microwave Heating on the Crystallization of Glutathione Tripeptide on Silver Nanoparticle Films. Journal of Physical Chemistry C, 2017, 121, 5585-5593.	3.1	Ο
12	Metal oxide surfaces for enhanced colorimetric response in bioassays. Colloids and Surfaces B: Biointerfaces, 2017, 154, 331-340.	5.0	1
13	Microwave Heating of Crystals with Gold Nanoparticles and Synovial Fluid under Synthetic Skin Patches. ACS Omega, 2017, 2, 5992-6002.	3.5	7
14	Synthesis and use of dioxime ligands for treatment of leukemia and colon cancer cells. Applied Organometallic Chemistry, 2017, 31, e3752.	3.5	9
15	Ultra-Rapid Crystallization of L-Alanine Using Monomode Microwaves, Indium Tin Oxide and Metal-Assisted and Microwave-Accelerated Evaporative Crystallization. Nano Biomedicine and Engineering, 2017, 9, 112-123.	0.9	2
16	Metal-Assisted and Microwave-Accelerated Decrystallization: An Alternative Approach to Potential Treatment of Crystal Deposition Diseases. , 2017, 1, .		1
17	Erkek Hemşin Koyununda Glandula İnterdigitalis'in Morfolojik ve Morfometrik Yapısı ile Arterial Vaskularizasyonu. Kafkas Universitesi Veteriner Fakultesi Dergisi, 2017, , .	0.1	0
18	The macroanatomy of the brachial plexus and its nerves in the common buzzard (Buteo buteo). Veterinarski Arhiv, 2017, 87, 759-768.	0.3	1

#	Article	IF	CITATIONS
19	Decrystallization of Crystals Using Gold "Nano-Bullets―and the Metal-Assisted and Microwave-Accelerated Decrystallization Technique. Molecules, 2016, 21, 1388.	3.8	3
20	A Highly Selective Sensor for Cyanide in Organic Media and on Solid Surfaces. Sensors, 2016, 16, 271.	3.8	19
21	Metal-assisted and microwave-accelerated evaporative crystallization: an approach to rapid crystallization of biomolecules. CrystEngComm, 2016, 18, 5600-5610.	2.6	4
22	Microwave Heating of Synthetic Skin Samples for Potential Treatment of Gout Using the Metal-Assisted and Microwave-Accelerated Decrystallization Technique. ACS Omega, 2016, 1, 744-754.	3.5	5
23	Synthesis, characterization, and evaluation of (E)-methyl 2-((2-oxonaphthalen-1(2 H) Tj ETQq1 1 0.784314 rgBT Chemistry, 2016, 24, 5592-5601.	/Overlock 3.0	2 10 Tf 50 58 8
24	Effect of Additives on the Crystal Morphology of Amino Acids: A Theoretical and Experimental Study. Journal of Physical Chemistry C, 2016, 120, 14749-14757.	3.1	17
25	High-Throughput Crystallization of <scp>l</scp> -Alanine Using iCrystal Plates and Metal-Assisted and Microwave-Accelerated Evaporative Crystallization. Industrial & Engineering Chemistry Research, 2016, 55, 2438-2446.	3.7	5
26	Characterization and use of (E)-2-[(6-methoxybenzo[d]thiazol-2-ylimino)methyl]phenol as an anion sensor and a DNA-binding agent. Tetrahedron Letters, 2016, 57, 537-542.	1.4	19
27	Microwave-accelerated bioassay technique for rapid and quantitative detection of biological and environmental samples. Biosensors and Bioelectronics, 2016, 75, 420-426.	10.1	9
28	Crystallization of Lysozyme on Metal Surfaces Using a Monomode Microwave System. Nano Biomedicine and Engineering, 2016, 8, .	0.9	5
29	Synthesis, characterization, theoretical calculations, DNA binding and colorimetric anion sensing applications of 1-[(E)-[(6-methoxy-1,3-benzothiazol-2-yl)imino]methyl]naphthalen-2-ol. Sensors and Actuators B: Chemical, 2015, 215, 52-61.	7.8	26
30	Metal-Assisted and Microwave-Accelerated Evaporative Crystallization: Proof-of-Principle Application to Proteins. Crystal Growth and Design, 2015, 15, 3212-3219.	3.0	11
31	Enhancement of the colorimetric response of enzymatic reactions by thermally evaporated plasmonic thin films: application to glial fibrillary acidic protein. Analytical Methods, 2015, 7, 1175-1185.	2.7	7
32	Metal-Enhanced Fluorescence from Silver Nanowires with High Aspect Ratio on Glass Slides for Biosensing Applications. Journal of Physical Chemistry C, 2015, 119, 675-684.	3.1	29
33	Enhancement of the Chemiluminescence Response of Enzymatic Reactions by Plasmonic Surfaces for Biosensing Applications. Nano Biomedicine and Engineering, 2015, 7, .	0.9	7
34	Metal-Assisted and Microwave-Accelerated Decrystallization. Nano Biomedicine and Engineering, 2015, 7, .	0.9	4
35	Malakan Atlarında (Equus Caballus) Ön ve Arka Bacağın Distal'indeki Kasların Yapısal ve Fonksiyon¢ Özellikleri. Kafkas Universitesi Veteriner Fakultesi Dergisi, 2015, , .	el 0.1	0
36	Enhancement of the Chemiluminescence Response of Enzymatic Reactions by Plasmonic Surfaces for Biosensing Applications. Nano Biomedicine and Engineering, 2015, 7, 92-101.	0.9	3

#	Article	IF	CITATIONS
37	Morphological and morphometrical characteristics of the interdigital gland in Kivircik sheep. Turkish Journal of Veterinary and Animal Sciences, 2014, 38, 485-489.	0.5	4
38	Simental Bir Buzağıda Görülen Çoklu Konjenital Anomaliler. Kafkas Universitesi Veteriner Fakultesi Dergisi, 2014, , .	0.1	2
39	Zavot Irkı Sığırlarda Koroner Arterler ve Kalp Kası Köprüleri. Kafkas Universitesi Veteriner Fakultesi Dergisi, 2014, , .	0.1	2
40	Immobilization of enzymes to silver island films for enhanced enzymatic activity. Journal of Colloid and Interface Science, 2014, 415, 133-142.	9.4	12
41	Enhancement of enzymatic colorimetric response by silver island films on high throughput screening microplates. Journal of Immunological Methods, 2014, 411, 43-49.	1.4	7
42	Crystal Engineering of l-Alanine with l-Leucine Additive using Metal-Assisted and Microwave-Accelerated Evaporative Crystallization. Crystal Growth and Design, 2014, 14, 2494-2501.	3.0	14
43	Rapid and Sensitive Detection of p53 Based on DNA-Protein Binding Interactions Using Silver Nanoparticle Films and Microwave Heating. Nano Biomedicine and Engineering, 2014, 6, 76-84.	0.9	7
44	De-crystallization of Uric Acid Crystals in Synovial Fluid Using Gold Colloids and Microwave Heating. Nano Biomedicine and Engineering, 2014, 6, 104-110.	0.9	11
45	Circular Bioassay Platforms for Applications in Microwave-Accelerated Techniques. Nano Biomedicine and Engineering, 2014, 6, 85-93.	0.9	5
46	Microwave-Accelerated Surface Modification of Plasmonic Gold Thin Films with Self-Assembled Monolayers of Alkanethiols. Langmuir, 2013, 29, 13209-13216.	3.5	11
47	The Statistical Analysis of Some Volumetric Measurements in the Japanese Quails' Head with Different Feather Color: A Computed Tomography Study. Kafkas Universitesi Veteriner Fakultesi Dergisi, 2013, , .	0.1	3
48	Design and Proof-of-Concept Use of A Circular PMMA Platform with 16-Well Sample Capacity for Microwave-Accelerated Bioassays. Nano Biomedicine and Engineering, 2013, 5, 10-19.	0.9	14
49	Crystallization of Amino Acids on a 21-Well Circular PMMA Platform Using Metal- Assisted and Microwave-Accelerated Evaporative Crystallization. Nano Biomedicine and Engineering, 2013, 5, .	0.9	3
50	Crystallization of Amino Acids on a 21-well Circular PMMA Platform using Metal-Assisted and Microwave-Accelerated Evaporative Crystallization. Nano Biomedicine and Engineering, 2013, 5, 140-147.	0.9	3
51	Rapid and Selective Crystallization of Acetaminophen Using Metal-Assisted and Microwave-Accelerated Evaporative Crystallization. Nano Biomedicine and Engineering, 2012, 4, 35-40.	0.9	21
52	Plasmon-Enhanced Enzymatic Reactions 2:Optimization of Enzyme Activity by Surface Modification of Silver Island Films with Biotin-Poly (Ethylene-glycol)-Amine. Nano Biomedicine and Engineering, 2012, 4, 23-28.	0.9	11
53	Rapid crystallization of glycine using metal-assisted and microwave-accelerated evaporative crystallization: the effect of engineered surfaces and sample volume. Nano Biomedicine and Engineering, 2012, 4, 125-131.	0.9	9
54	Crystallization of l-alanine in the presence of additives on a circular PMMA platform designed for metal-assisted and microwave-accelerated evaporative crystallization. CrystEngComm, 2012, 14, 8424.	2.6	15

#	Article	IF	CITATIONS
55	Rapid crystallization of l-arginine acetate on engineered surfaces using metal-assisted and microwave-accelerated evaporative crystallization. CrystEngComm, 2012, 14, 4557.	2.6	17
56	Rapid Crystallization of <scp>l</scp> -Alanine on Engineered Surfaces by Use of Metal-Assisted and Microwave-Accelerated Evaporative Crystallization. Crystal Growth and Design, 2012, 12, 346-353.	3.0	18
57	Surface modification of plasmonic nanostructured materials with thiolated oligonucleotides in 10 seconds using selective microwave heating. Annalen Der Physik, 2012, 524, 741-750.	2.4	5
58	What is Leisure for Turkish Parents?. Procedia, Social and Behavioral Sciences, 2012, 55, 390-398.	0.5	3
59	Metal-Assisted and Microwave-Accelerated Evaporative Crystallization: Application tol-Alanine. Crystal Growth and Design, 2011, 11, 4300-4304.	3.0	24
60	Rapid and Sensitive Detection of Troponin I in Human Whole Blood Samples by Using Silver Nanoparticle Films and Microwave Heating. Clinical Chemistry, 2011, 57, 746-752.	3.2	37
61	A morphometric study on dog cerebellum. Neurological Research, 2011, 33, 220-224.	1.3	10
62	Rapid and Sensitive Detection of Troponin I-T-C Complex from Human Serum using Microwave-Accelerated Metal-Enhanced Fluorescence. Nano Biomedicine and Engineering, 2011, 3, 179-183.	0.9	5
63	Plasmon-Enhanced Enzymatic Reactions: A Study of Nanoparticle-Enzyme Distance and Nanoparticle Loading-Dependent Enzymatic Activity. Nano Biomedicine and Engineering, 2011, 3, 184-191.	0.9	18
64	Ultrafast and sensitive bioassay using split ring resonator structures and microwave heating. Applied Physics Letters, 2010, 97, .	3.3	18
65	Metal-Assisted and Microwave-Accelerated Evaporative Crystallization. Crystal Growth and Design, 2010, 10, 4706-4709.	3.0	30
66	Rapid Whole Blood Bioassays Using Microwave-Accelerated Metal-Enhanced Fluorescence. Nano Biomedicine and Engineering, 2010, 2, 1-9.	0.9	23
67	Rapid and Sensitive Colorimetric ELISA Using Silver Nanoparticles, Microwaves and Split Ring Resonator Structures. Nano Biomedicine and Engineering, 2010, 2, 155-164.	0.9	12
68	Quantitative Comparison of Protein Surface Coverage on Glass Slides and Silver Island Films in Metal-Enhanced Fluorescence-based Biosensing Applications. Nano Biomedicine and Engineering, 2010, 2, 165-170.	0.9	8
69	Fixed-angle observation of surface plasmon coupled chemiluminescence from palladium thin films. Applied Physics Letters, 2009, 95, 123117.	3.3	5
70	Surface plasmon coupled chemiluminescence from zinc substrates: Directional chemiluminescence. Applied Physics Letters, 2009, 94, 073104.	3.3	12
71	Voltage-Gated Metal-Enhanced Fluorescence. Journal of Fluorescence, 2009, 19, 363-367.	2.5	3
72	Wavelength-Ratiometric Plasmon Light Scattering-Based Immunoassays. Plasmonics, 2009, 4, 267-272.	3.4	13

#	Article	IF	CITATIONS
73	Directional surface plasmon coupled chemiluminescence from nickel thin films: Fixed angle observation. Chemical Physics Letters, 2009, 473, 120-125.	2.6	5
74	Surface Plasmon Coupled Fluorescence in the Visible to Near-Infrared Spectral Regions using Thin Nickel Films: Application to Whole Blood Assays. Analytical Chemistry, 2009, 81, 3801-3808.	6.5	23
75	Directional, Broad, and Fixed Angle Surface Plasmon Coupled Fluorescence from Iron Thin Films. Journal of Physical Chemistry C, 2009, 113, 20535-20538.	3.1	6
76	Sonication-Assisted Metal-Enhanced Fluorescence-Based Bioassays. Analytical Chemistry, 2009, 81, 4713-4719.	6.5	14
77	Metal-enhanced chemiluminescence: advanced chemiluminescence concepts for the 21st century. Chemical Society Reviews, 2009, 38, 2556.	38.1	131
78	Metal-Enhanced Fluorescence (MEF). Biophysical Journal, 2009, 96, 45a.	0.5	0
79	Rapid Detection of Troponin I from Serum using Microwave-Accelerated Metal-Enhanced Fluorescence. Biophysical Journal, 2009, 96, 46a.	0.5	0
80	Directional Surface Plasmon Coupled Luminescence for Analytical Sensing Applications: Which Metal, What Wavelength, What Observation Angle?. Analytical Chemistry, 2009, 81, 6913-6922.	6.5	58
81	Surface plasmon coupled chemiluminescence from iron thin films: Directional and approaching fixed angle observation. Journal of Applied Physics, 2009, 106, 014313.	2.5	9
82	Use of surface plasmon-coupled emission for enhancing light transmission through Top-Emitting Organic Light Emitting Diodes. Thin Solid Films, 2008, 516, 1977-1983.	1.8	10
83	A Review of an Ultrafast and Sensitive Bioassay Platform Technology: Microwave-accelerated Metal-enhanced Fluorescence. Plasmonics, 2008, 3, 89-101.	3.4	37
84	Metal-enhanced fluorescence from paper substrates: Modified spectral properties of dyes for potential high-throughput surface analysis and assays and as an anti-counterfeiting technology. Dyes and Pigments, 2008, 77, 545-549.	3.7	27
85	Angular-dependent metal-enhanced fluorescence from silver island films. Chemical Physics Letters, 2008, 453, 222-228.	2.6	38
86	Metal-enhanced excimer (P-type) fluorescence. Chemical Physics Letters, 2008, 458, 147-151.	2.6	17
87	Silver island nanodeposits to enhance surface plasmon coupled fluorescence from copper thin films. Chemical Physics Letters, 2008, 464, 216-219.	2.6	20
88	Microwave-accelerated surface plasmon-coupled directional luminescence 2: A platform technology for ultra fast and sensitive target DNA detection in whole blood. Journal of Immunological Methods, 2008, 331, 103-113.	1.4	24
89	Extraction and Detection of DNA from <i>Bacillus anthracis</i> Spores and the Vegetative Cells within 1 min. Analytical Chemistry, 2008, 80, 4125-4132.	6.5	50
90	Metal-Enhanced Fluorescence from Chromium Nanodeposits. Journal of Physical Chemistry C, 2008, 112, 17969-17973.	3.1	41

Kadir Aslan

#	Article	IF	CITATIONS
91	Surface Plasmon Coupled Fluorescence in the Ultraviolet and Visible Spectral Regions Using Zinc Thin Films. Analytical Chemistry, 2008, 80, 7304-7312.	6.5	49
92	Metal-Enhanced Fluorescence from Nanoparticulate Zinc Films. Journal of Physical Chemistry C, 2008, 112, 18368-18375.	3.1	78
93	New tools for rapid clinical and bioagent diagnostics: microwaves and plasmonic nanostructures. Analyst, The, 2008, 133, 1469.	3.5	23
94	Plasmonic engineering of singlet oxygen generation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1798-1802.	7.1	171
95	Metal-enhanced e-type fluorescence. Applied Physics Letters, 2008, 92, 013905.	3.3	22
96	Conversion of just-continuous metallic films to large particulate substrates for metal-enhanced fluorescence. Journal of Applied Physics, 2008, 103, 084307.	2.5	42
97	Metal-enhanced superoxide generation: A consequence of plasmon-enhanced triplet yields. Applied Physics Letters, 2007, 91, 023114.	3.3	15
98	Microwave-accelerated plasmonics: application to ultrafast and ultrasensitive clinical assays. , 2007, ,		2
99	Computational study of fluorescence scattering by silver nanoparticles. Journal of the Optical Society of America B: Optical Physics, 2007, 24, 2259.	2.1	47
100	Metal-enhanced fluorescence: Surface plasmons can radiate a fluorophore's structured emission. Applied Physics Letters, 2007, 90, 053107.	3.3	68
101	Metal-enhanced fluorescence from copper substrates. Applied Physics Letters, 2007, 90, 173116.	3.3	90
102	Surface plasmon coupled fluorescence from copper substrates. Applied Physics Letters, 2007, 91, 151902.	3.3	21
103	Microwave-accelerated metal-enhanced fluorescence: application to detection of genomic and exosporium anthrax DNA in <30 seconds. Analyst, The, 2007, 132, 1130.	3.5	43
104	Microwave-accelerated metal-enhanced fluorescence: an ultra-fast and sensitive DNA sensing platform. Analyst, The, 2007, 132, 1122.	3.5	32
105	Angular-dependent metal-enhanced fluorescence from silver colloid-deposited films: opportunity for angular-ratiometric surface assays. Analyst, The, 2007, 132, 1112.	3.5	23
106	Spatial and Temporal Control of Microwave Triggered Chemiluminescence:  A Protein Detection Platform. Analytical Chemistry, 2007, 79, 7042-7052.	6.5	26
107	Metal-Enhanced Surface Plasmon-Coupled Phosphorescence. Journal of Physical Chemistry C, 2007, 111, 6051-6059.	3.1	36
108	Microwave-Accelerated Ultrafast Nanoparticle Aggregation Assays Using Gold Colloids. Analytical Chemistry, 2007, 79, 2131-2136.	6.5	28

#	Article	IF	CITATIONS
109	Metal-Enhanced Fluorescence of Phycobiliproteins from Heterogeneous Plasmonic Nanostructures. Journal of Physical Chemistry C, 2007, 111, 18856-18863.	3.1	47
110	Fluorescent Coreâ^'Shell Ag@SiO2Nanocomposites for Metal-Enhanced Fluorescence and Single Nanoparticle Sensing Platforms. Journal of the American Chemical Society, 2007, 129, 1524-1525.	13.7	526
111	First observation of surface plasmon-coupled chemiluminescence (SPCC). Chemical Physics Letters, 2007, 435, 114-118.	2.6	32
112	Microwave-Accelerated Surface Plasmon-Coupled Directional Luminescence: Application to fast and sensitive assays in buffer, human serum and whole blood. Journal of Immunological Methods, 2007, 323, 55-64.	1.4	39
113	Metal Enhanced Fluorescence Solution-based Sensing Platform 2: Fluorescent Core-Shell Ag@SiO2 Nanoballs. Journal of Fluorescence, 2007, 17, 127-131.	2.5	80
114	Metal-enhanced Singlet Oxygen Generation: A Consequence of Plasmon Enhanced Triplet Yields. Journal of Fluorescence, 2007, 17, 345-349.	2.5	107
115	Low Temperature Metal-Enhanced Fluorescence. Journal of Fluorescence, 2007, 17, 627-631.	2.5	15
116	Real-time Thermal Imaging of Microwave Accelerated Metal-Enhanced Fluorescence (MAMEF) Based Assays on Sapphire Plates. Journal of Fluorescence, 2007, 17, 639-642.	2.5	8
117	Plasmonic DNA Technology. Plasmonics, 2007, 2, 163-163.	3.4	1
118	Metal-enhanced chemiluminescence: Radiating plasmons generated from chemically induced electronic excited states. Applied Physics Letters, 2006, 88, 173104.	3.3	66
119	Metal-Enhanced Phosphorescence:Â Interpretation in Terms of Triplet-Coupled Radiating Plasmons. Journal of Physical Chemistry B, 2006, 110, 25108-25114.	2.6	89
120	Multicolor Directional Surface Plasmon-Coupled Chemiluminescence. Journal of Physical Chemistry B, 2006, 110, 22644-22651.	2.6	21
121	Metal-Enhanced Fluorescence-Based RNA Sensing. Journal of the American Chemical Society, 2006, 128, 4206-4207.	13.7	168
122	Metal-enhanced fluorescence from silver nanoparticle-deposited polycarbonate substrates. Journal of Materials Chemistry, 2006, 16, 2846.	6.7	95
123	Microwave Triggered Metal Enhanced Chemiluminescence:Â Quantitative Protein Determination. Analytical Chemistry, 2006, 78, 8020-8027.	6.5	44
124	Multicolor Microwave-Triggered Metal-Enhanced Chemiluminescence. Journal of the American Chemical Society, 2006, 128, 13372-13373.	13.7	44
125	Fast and sensitive DNA hybridization assays using microwave-accelerated metal-enhanced fluorescence. Biochemical and Biophysical Research Communications, 2006, 348, 612-617.	2.1	40
126	Metal-enhanced phosphorescence (MEP). Chemical Physics Letters, 2006, 427, 432-437.	2.6	57

#	Article	IF	CITATIONS
127	Surface plasmon coupled phosphorescence (SPCP). Chemical Physics Letters, 2006, 432, 610-615.	2.6	18
128	Metal-enhanced S2 fluorescence from azulene. Chemical Physics Letters, 2006, 432, 528-532.	2.6	23
129	Microwave-Accelerated Metal-Enhanced Fluorescence (MAMEF): Application to Ultra Fast and Sensitive Clinical Assays. Journal of Fluorescence, 2006, 16, 3-8.	2.5	44
130	Metal-Enhanced Chemiluminescence. Journal of Fluorescence, 2006, 16, 295-299.	2.5	52
131	Microwave-Triggered Metal-Enhanced Chemiluminescence (MT-MEC): Application to Ultra-fast and Ultra-sensitive Clinical Assays. Journal of Fluorescence, 2006, 16, 641-647.	2.5	11
132	Metal-Enhanced Fluorescence from Gold Surfaces: Angular Dependent Emission. Journal of Fluorescence, 2006, 17, 7-13.	2.5	89
133	Microwave-Accelerated and Metal-Enhanced Fluorescence Myoglobin Detection on Silvered Surfaces: Potential Application to Myocardial Infarction Diagnosis. Plasmonics, 2006, 1, 53-59.	3.4	37
134	Nonradiative Interactions between Biotin-Functionalized Gold Nanoparticles and Fluorophore-Labeled Antibiotin. Plasmonics, 2006, 1, 111-119.	3.4	19
135	Microwave-Accelerated Metal-Enhanced Fluorescence (MAMEF) with silver colloids in 96-well plates: Application to ultra fast and sensitive immunoassays, High Throughput Screening and drug discovery. Journal of Immunological Methods, 2006, 312, 137-147.	1.4	55
136	Plasmonic Glucose Sensing. , 2006, , 259-282.		4
137	Plasmon-controlled fluorescence: a new detection technology. , 2006, 6099, 609909.		24
138	Metal-Enhanced Fluorescence: Application to High-Throughput Screening and Drug Discovery. , 2005, , 603-666.		5
139	Metal-Enhanced Fluorescence Sensing. , 2005, , 121-181.		1
140	Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives. Current Opinion in Chemical Biology, 2005, 9, 538-544.	6.1	279
141	Metal-enhanced fluorescence: an emerging tool in biotechnology. Current Opinion in Biotechnology, 2005, 16, 55-62.	6.6	702
142	Rapid Deposition of Triangular Silver Nanoplates on Planar Surfaces:  Application to Metal-Enhanced Fluorescence. Journal of Physical Chemistry B, 2005, 109, 6247-6251.	2.6	202
143	Metal-enhanced fluorescence using anisotropic silver nanostructures: critical progress to date. Analytical and Bioanalytical Chemistry, 2005, 382, 926-933.	3.7	155
144	Enhanced Ratiometric pH Sensing Using SNAFL-2 on Silver Island Films: Metal-enhanced Fluorescence Sensing. Journal of Fluorescence, 2005, 15, 37-40.	2.5	61

#	Article	IF	CITATIONS
145	Metal-Enhanced Fluorescence from Plastic Substrates. Journal of Fluorescence, 2005, 15, 99-104.	2.5	54
146	Annealed Silver-Island Films for Applications in Metal-Enhanced Fluorescence: Interpretation in Terms of Radiating Plasmons. Journal of Fluorescence, 2005, 15, 643-654.	2.5	257
147	Angular-dependent polarization-based plasmon light scattering for bioaffinity sensing. Applied Physics Letters, 2005, 87, 234108.	3.3	16
148	Nanogold Plasmon Resonance-Based Glucose Sensing. 2. Wavelength-Ratiometric Resonance Light Scattering. Analytical Chemistry, 2005, 77, 2007-2014.	6.5	160
149	Angular-Ratiometric Plasmon-Resonance Based Light Scattering for Bioaffinity Sensing. Journal of the American Chemical Society, 2005, 127, 12115-12121.	13.7	81
150	Fast and Slow Deposition of Silver Nanorods on Planar Surfaces:Â Application to Metal-Enhanced Fluorescence. Journal of Physical Chemistry B, 2005, 109, 3157-3162.	2.6	209
151	Microwave-Accelerated Metal-Enhanced Fluorescence:Â Platform Technology for Ultrafast and Ultrabright Assays. Analytical Chemistry, 2005, 77, 8057-8067.	6.5	119
152	Advances in surface-enhanced fluorescence. , 2004, , .		5
153	Metal-enhanced fluorescence: a novel approach to ultra-sensitive fluorescence sensing assay platforms. , 2004, 5321, 275-282.		3
154	Saccharide Sensing Using Gold and Silver Nanoparticles-A Review. Journal of Fluorescence, 2004, 14, 391-400.	2.5	126
155	Quenched Emission of Fluorescence by Ligand Functionalized Gold Nanoparticles. Journal of Fluorescence, 2004, 14, 401-405.	2.5	59
156	Advances in Surface-Enhanced Fluorescence. Journal of Fluorescence, 2004, 14, 425-441.	2.5	293
157	Editorial: Plasmonics. Journal of Fluorescence, 2004, 14, 329.	2.5	2
158	Metal-Enhanced Fluorescence Solution-Based Sensing Platform. Journal of Fluorescence, 2004, 14, 677-679.	2.5	122
159	Nanogold-plasmon-resonance-based glucose sensing. Analytical Biochemistry, 2004, 330, 145-155.	2.4	216
160	Tunable plasmonic glucose sensing based on the dissociation of Con A-aggregated dextran-coated gold colloids. Analytica Chimica Acta, 2004, 517, 139-144.	5.4	60
161	Controlled and Reversible Aggregation of Biotinylated Gold Nanoparticles with Streptavidin. Journal of Physical Chemistry B, 2004, 108, 15631-15639.	2.6	170
162	Noble-Metal Surfaces for Metal-Enhanced Fluorescence. , 2004, , 365-401.		15

#	Article	IF	CITATIONS
163	Plasmonic tunable glucose sensing based on the dissociation of Con A-aggregated dextran-coated gold colloids. , 2004, 5327, 106.		0
164	Luminescent blinking from silver, gold, and copper nanostructures: a new class of probes for imaging and localization. , 2004, , .		0
165	Enhanced chemical fluorescence-based sensing using metallic nano-composites. , 2004, 5318, 66.		1
166	Surface Modification of Colloidal Gold by Chemisorption of Alkanethiols in the Presence of a Nonionic Surfactant. Langmuir, 2002, 18, 6059-6065.	3.5	204
167	Automated detection and quantification of transverse cracks on woven composites. Journal of Reinforced Plastics and Composites, 0, , 073168442110176.	3.1	3