David L Levens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6040515/publications.pdf

Version: 2024-02-01

112

all docs

106 9,442 49
papers citations h-index

112

docs citations

h-index g-index

112 13033
times ranked citing authors

93

#	Article	IF	CITATIONS
1	MYC amplifies gene expression through global changes in transcription factor dynamics. Cell Reports, 2022, 38, 110292.	6.4	25
2	MYC assembles and stimulates topoisomerases 1 and 2 in a "topoisome― Molecular Cell, 2022, 82, 140-158.e12.	9.7	30
3	Non-equilibrium structural dynamics of supercoiled DNA plasmids exhibits asymmetrical relaxation. Nucleic Acids Research, 2022, 50, 2754-2764.	14.5	4
4	Mechanical determinants of chromatin topology and gene expression. Nucleus, 2022, 13, 95-116.	2.2	20
5	Targeting CDK9 for the Treatment of Glioblastoma. Cancers, 2021, 13, 3039.	3.7	12
6	Drugging the "Undruggable―MYCN Oncogenic Transcription Factor: Overcoming Previous Obstacles to Impact Childhood Cancers. Cancer Research, 2021, 81, 1627-1632.	0.9	25
7	FUBP1 and FUBP2 enforce distinct epigenetic setpoints for MYC expression in primary single murine cells. Communications Biology, 2020, 3, 545.	4.4	8
8	MYC protein stability is negatively regulated by BRD4. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13457-13467.	7.1	85
9	Transcriptional repression of Myc underlies the tumour suppressor function of AGO1 in Drosophila. Development (Cambridge), 2020, 147, .	2.5	4
10	Dissecting transcriptional amplification by MYC. ELife, 2020, 9, .	6.0	41
11	The Texture of Chromatin. Cell, 2019, 179, 579-581.	28.9	5
11	The Texture of Chromatin. Cell, 2019, 179, 579-581. In Vivo Chemical Probing for G-Quadruplex Formation. Methods in Molecular Biology, 2019, 2035, 369-382.	28.9	5
	In Vivo Chemical Probing for G-Quadruplex Formation. Methods in Molecular Biology, 2019, 2035,		
12	In Vivo Chemical Probing for G-Quadruplex Formation. Methods in Molecular Biology, 2019, 2035, 369-382. Single-molecule visualization of the effects of ionic strength and crowding on structure-mediated	0.9	12
12	In Vivo Chemical Probing for G-Quadruplex Formation. Methods in Molecular Biology, 2019, 2035, 369-382. Single-molecule visualization of the effects of ionic strength and crowding on structure-mediated interactions in supercoiled DNA molecules. Nucleic Acids Research, 2019, 47, 6360-6368.	0.9	12
12 13 14	In Vivo Chemical Probing for G-Quadruplex Formation. Methods in Molecular Biology, 2019, 2035, 369-382. Single-molecule visualization of the effects of ionic strength and crowding on structure-mediated interactions in supercoiled DNA molecules. Nucleic Acids Research, 2019, 47, 6360-6368. The Energetics and Physiological Impact of Cohesin Extrusion. Cell, 2018, 173, 1165-1178.e20.	0.9	12 11 399
12 13 14	In Vivo Chemical Probing for G-Quadruplex Formation. Methods in Molecular Biology, 2019, 2035, 369-382. Single-molecule visualization of the effects of ionic strength and crowding on structure-mediated interactions in supercoiled DNA molecules. Nucleic Acids Research, 2019, 47, 6360-6368. The Energetics and Physiological Impact of Cohesin Extrusion. Cell, 2018, 173, 1165-1178.e20. DNA Supercoiling(omics)., 2018, , 81-99.	0.9 14.5 28.9	12 11 399 0

#	Article	IF	CITATIONS
19	Permanganate/S1 Nuclease Footprinting Reveals Non-B DNA Structures with Regulatory Potential across a Mammalian Genome. Cell Systems, 2017, 4, 344-356.e7.	6.2	169
20	Single Molecule Visualization of Topology-Mediated Interactions in Supercoiled DNA. Biophysical Journal, 2017, 112, 474a.	0.5	0
21	Single Molecule Analysis of Transcription in Live Cells Reveals the Gene Regulatory Function of MYC In Vivo. Biophysical Journal, 2017, 112, 210a-211a.	0.5	0
22	Global Inhibition with Specific Activation: How p53 and MYC Redistribute the Transcriptome in the DNA Double-Strand Break Response. Molecular Cell, 2017, 67, 1013-1025.e9.	9.7	55
23	Myc Regulates Chromatin Decompaction and Nuclear Architecture during B Cell Activation. Molecular Cell, 2017, 67, 566-578.e10.	9.7	174
24	Enhancers not required. ELife, 2017, 6, .	6.0	0
25	Controlling gene expression by DNA mechanics: emerging insights and challenges. Biophysical Reviews, 2016, 8, 23-32.	3.2	7
26	GTF2E2 Mutations Destabilize the General Transcription Factor Complex TFIIE in Individuals with DNA Repair-Proficient Trichothiodystrophy. American Journal of Human Genetics, 2016, 98, 627-642.	6.2	49
27	Defining the essential function of FBP/KSRP proteins: <i>Drosophila </i> Psi interacts with the mediator complex to modulate <i>MYC </i> transcription and tissue growth. Nucleic Acids Research, 2016, 44, 7646-7658.	14.5	16
28	RNA Polymerase II Regulates Topoisomerase 1 Activity to Favor Efficient Transcription. Cell, 2016, 165, 357-371.	28.9	211
29	Controlling gene expression by DNA mechanics: emerging insights and challenges. Biophysical Reviews, 2016, 8, 259-268.	3.2	22
30	Far Upstream Element Binding Protein Plays a Crucial Role in Embryonic Development, Hematopoiesis, and Stabilizing Myc Expression Levels. American Journal of Pathology, 2016, 186, 701-715.	3.8	32
31	ChIP bias as a function of cross-linking time. Chromosome Research, 2016, 24, 175-181.	2.2	72
32	Ups and Downs of Poised RNA Polymerase II in B-Cells. PLoS Computational Biology, 2016, 12, e1004821.	3.2	2
33	Tuning the MYC response. ELife, 2016, 5, .	6.0	2
34	Defective Hfp-dependent transcriptional repression of dMYC is fundamental to tissue overgrowth in Drosophila XPB models. Nature Communications, 2015, 6, 7404.	12.8	13
35	Shapely DNA attracts the right partner. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4516-4517.	7.1	3
36	Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples. Nature, 2015, 528, 142-146.	27.8	303

#	Article	IF	Citations
37	Taming of the beast: shaping Myc-dependent amplification. Trends in Cell Biology, 2015, 25, 241-248.	7.9	119
38	FBP1 Is an Interacting Partner of Menin. International Journal of Endocrinology, 2014, 2014, 1-6.	1.5	5
39	DNA Break Mapping Reveals Topoisomerase II Activity Genome-Wide. International Journal of Molecular Sciences, 2014, 15, 13111-13122.	4.1	70
40	Potential non-B DNA regions in the human genome are associated with higher rates of nucleotide mutation and expression variation. Nucleic Acids Research, 2014, 42, 12367-12379.	14.5	45
41	DNA topology and transcription. Nucleus, 2014, 5, 195-202.	2.2	51
42	CTCF and cohesin cooperate to organize the 3D structure of the mammalian genome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 889-890.	7.1	25
43	A New Twist on Transcriptional Bursting. Cell, 2014, 158, 241-242.	28.9	9
44	Editorial overview: Genome architecture and expression: The nucleus, top and bottom. Current Opinion in Genetics and Development, 2014, 25, v-vii.	3.3	1
45	Histone deacetylase inhibitorâ€mediated cell death is distinct from its global effect on chromatin. Molecular Oncology, 2014, 8, 1379-1392.	4.6	39
46	The influence of DNA repair on neurological degeneration, cachexia, skin cancer and internal neoplasms: autopsy report of four xeroderma pigmentosum patients (XP-A, XP-C and XP-D). Acta Neuropathologica Communications, 2013, 1, 4.	5.2	40
47	Cellular MYCro Economics: Balancing MYC Function with MYC Expression. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a014233-a014233.	6.2	48
48	H2A.Z Facilitates Access of Active and Repressive Complexes to Chromatin in Embryonic Stem Cell Self-Renewal and Differentiation. Cell Stem Cell, 2013, 12, 180-192.	11,1	272
49	Transcription-dependent dynamic supercoiling is a short-range genomic force. Nature Structural and Molecular Biology, 2013, 20, 396-403.	8.2	270
50	Thrombospondin-1 Signaling through CD47 Inhibits Self-renewal by Regulating c-Myc and Other Stem Cell Transcription Factors. Scientific Reports, 2013, 3, 1673.	3.3	124
51	Global Regulation of Promoter Melting in Naive Lymphocytes. Cell, 2013, 153, 988-999.	28.9	145
52	Notching Up MYC Gives a LIC. Cell Stem Cell, 2013, 13, 8-9.	11.1	3
53	Interactions between SAP155 and FUSE-Binding Protein-Interacting Repressor Bridges <i>c-Myc</i> and P27Kip1 Expression. Molecular Cancer Research, 2013, 11, 689-698.	3.4	23
54	The genome-wide distribution of non-B DNA motifs is shaped by operon structure and suggests the transcriptional importance of non-B DNA structures in Escherichia coli. Nucleic Acids Research, 2013, 41, 5965-5977.	14.5	55

#	Article	IF	CITATIONS
55	DNA Topoisomerases. Transcription, 2013, 4, 232-237.	3.1	43
56	Partition of Myc into Immobile vs. Mobile Complexes within Nuclei. Scientific Reports, 2013, 3, 1953.	3.3	7
57	SAP155-Mediated Splicing of FUSE-Binding Protein-Interacting Repressor Serves as a Molecular Switch for <i>c-myc</i> Gene Expression. Molecular Cancer Research, 2012, 10, 787-799.	3.4	25
58	c-Myc Is a Universal Amplifier of Expressed Genes in Lymphocytes and Embryonic Stem Cells. Cell, 2012, 151, 68-79.	28.9	907
59	Revisiting Global Gene Expression Analysis. Cell, 2012, 151, 476-482.	28.9	526
60	The importance of being supercoiled: How DNA mechanics regulate dynamic processes. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 632-638.	1.9	83
61	Rapid genome-scale mapping of chromatin accessibility in tissue. Epigenetics and Chromatin, 2012, 5, 10.	3.9	30
62	Teasing Apart Translational and Transcriptional Components of Stochastic Variations in Eukaryotic Gene Expression. PLoS Computational Biology, 2012, 8, e1002644.	3.2	21
63	DNA stress and strain, <i>iin silico </i> , <i>iin vitro </i> and <i>iin vivo </i> . Physical Biology, 2011, 8, 035011.	1.8	18
64	The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells. Blood, 2011, 117, 211-220.	1.4	300
65	Synergistic effect of nonâ€transmissible Sendai virus vector encoding the ⟨i⟩câ€myc⟨ i⟩ suppressor FUSEâ€binding proteinâ€interacting repressor plus cisplatin in the treatment of malignant pleural mesothelioma. Cancer Science, 2011, 102, 1366-1373.	3.9	19
66	JTV1 co-activates FBP to induce USP29 transcription and stabilize p53 in response to oxidative stress. EMBO Journal, 2011, 30, 846-858.	7.8	124
67	"You Don't Muck with MYC". Genes and Cancer, 2010, 1, 547-554.	1.9	81
68	Cooperative Epigenetic Modulation by Cancer Amplicon Genes. Cancer Cell, 2010, 18, 590-605.	16.8	263
69	Protein expression profiles distinguish between experimental invasive pulmonary aspergillosis and Pseudomonas pneumonia. Proteomics, 2010, 10, 4270-4280.	2.2	16
70	Reliable Noise. Science, 2010, 327, 1088-1089.	12.6	7
71	Overexpression of the far upstream element binding protein 1 in hepatocellular carcinoma is required for tumor growth. Hepatology, 2009, 50, $1121-1129$.	7.3	77
72	The functional response of upstream DNA to dynamic supercoiling in vivo. Nature Structural and Molecular Biology, 2008, 15, 146-154.	8.2	266

#	Article	IF	Citations
73	Dimerization of FIR upon FUSE DNA binding suggests a mechanism of c-myc inhibition. EMBO Journal, 2008, 27, 277-289.	7.8	54
74	How the c-myc Promoter Works and Why It Sometimes Does Not. Journal of the National Cancer Institute Monographs, 2008, 2008, 41-43.	2.1	47
75	Isolation and Characterization of a Novel H1.2 Complex That Acts as a Repressor of p53-mediated Transcription. Journal of Biological Chemistry, 2008, 283, 9113-9126.	3.4	104
76	Hierarchical mechanisms build the DNA-binding specificity of FUSE binding protein. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18296-18301.	7.1	35
77	Ribosomal Protein S3: A KH Domain Subunit in NF-κB Complexes that Mediates Selective Gene Regulation. Cell, 2007, 131, 927-939.	28.9	305
78	Supercoil-driven DNA structures regulate genetic transactions. Frontiers in Bioscience - Landmark, 2007, 12, 4409.	3.0	93
79	The FUSE/FBP/FIR/TFIIH system is a molecular machine programming a pulse of c-myc expression. EMBO Journal, 2006, 25, 2119-2130.	7.8	140
80	An Essential Role of Alternative Splicing of c-myc Suppressor FUSE-Binding Protein–Interacting Repressor in Carcinogenesis. Cancer Research, 2006, 66, 1409-1417.	0.9	80
81	FBPs Are Calibrated Molecular Tools To Adjust Gene Expression. Molecular and Cellular Biology, 2006, 26, 6584-6597.	2.3	64
82	TFIIH Operates through an Expanded Proximal Promoter To Fine-Tune c -myc Expression. Molecular and Cellular Biology, 2005, 25, 147-161.	2.3	57
83	c-myc expression: keep the noise down!. Molecules and Cells, 2005, 20, 157-66.	2.6	73
84	The dynamic response of upstream DNA to transcription-generated torsional stress. Nature Structural and Molecular Biology, 2004, 11, 1092-1100.	8.2	146
85	NMR-Driven Discovery of Benzoylanthranilic Acid Inhibitors of Far Upstream Element Binding Protein Binding to the Human Oncogene c-myc Promoter. Journal of Medicinal Chemistry, 2004, 47, 4851-4857.	6.4	43
86	Reconstructing MYC: Figure 1 Genes and Development, 2003, 17, 1071-1077.	5.9	121
87	Disentangling the MYC web. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5757-5759.	7.1	112
88	Structure and dynamics of KH domains from FBP bound to single-stranded DNA. Nature, 2002, 415, 1051-1056.	27.8	150
89	Molecular basis of sequence-specific single-stranded DNA recognition by KH domains: solution structure of a complex between hnRNP K KH3 and single-stranded DNA. EMBO Journal, 2002, 21, 3476-3485.	7.8	128
90	Defective Interplay of Activators and Repressors with TFIIH in Xeroderma Pigmentosum. Cell, 2001, 104, 353-363.	28.9	117

#	Article	IF	CITATIONS
91	Transcriptional Consequences of Topoisomerase Inhibition. Molecular and Cellular Biology, 2001, 21, 8437-8451.	2.3	112
92	Loss of FBP function arrests cellular proliferation and extinguishes c-myc expression. EMBO Journal, 2000, 19, 1034-1044.	7.8	141
93	The FBP Interacting Repressor Targets TFIIH to Inhibit Activated Transcription. Molecular Cell, 2000, 5, 331-341.	9.7	149
94	Chemical Shift Mapped DNA-Binding Sites and 15N Relaxation Analysis of the C-Terminal KH Domain of Heterogeneous Nuclear Ribonucleoprotein K. Biochemistry, 2000, 39, 6022-6032.	2.5	20
95	High Precision Solution Structure of the C-terminal KH Domain of Heterogeneous Nuclear Ribonucleoprotein K, a c-myc Transcription Factor. Journal of Molecular Biology, 1999, 289, 949-962.	4.2	92
96	Unrestraining Genetic Processes with a Protein–DNA Hinge. Molecular Cell, 1998, 1, 759-764.	9.7	43
97	Nm23/PuF Does Not Directly Stimulate Transcription through the CT Element in Vivo. Journal of Biological Chemistry, 1997, 272, 22526-22530.	3.4	40
98	Marking of active genes on mitotic chromosomes. Nature, 1997, 388, 895-899.	27.8	161
99	The Far Upstream Element-binding Proteins Comprise an Ancient Family of Single-strand DNA-binding Transactivators. Journal of Biological Chemistry, 1996, 271, 31679-31687.	3.4	156
100	Cellular Nucleic Acid Binding Protein Regulates the CT Element of the Human c- myc Protooncogene. Journal of Biological Chemistry, 1995, 270, 9494-9499.	3.4	214
101	Heterogeneous Nuclear Ribonucleoprotein K Is a DNA-binding Transactivator. Journal of Biological Chemistry, 1995, 270, 4875-4881.	3.4	172
102	Targeted Melting and Binding of a DNA Regulatory Element by a Transactivator of c-myc. Journal of Biological Chemistry, 1995, 270, 8241-8248.	3.4	64
103	Myelopathy following intrathecal chemotherapy in a patient with extensive burkitt's lymphoma and altered immune status. American Journal of Medicine, 1985, 78, 697-702.	1.5	19
104	Cardiac involvement by Kaposi's sarcoma in acquired immune deficiency syndrome (AIDS). American Journal of Cardiology, 1984, 53, 983-985.	1.6	102
105	INITIATION AND TRANSCRIPTION OF YEAST MITOCHONDRIAL RNA. , 1983, , 69-78.		2
106	Analysis of transcriptional initiation of yeast mitochondrial DNA in a homologous in vitro transcription system. Cell, 1982, 31, 337-346.	28.9	84