List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6040492/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Study on tribological properties of novel biomimetic material for water-lubricated stern tube bearing. Wear, 2017, 376-377, 911-919.	1.5	67
2	Study on Influence of Cylinder Liner Surface Texture on Lubrication Performance for Cylinder Liner–Piston Ring Components. Tribology Letters, 2013, 51, 9-23.	1.2	65
3	Study on influence of Koch snowflake surface texture on tribological performance for marine water-lubricated bearings. Tribology International, 2019, 129, 29-37.	3.0	62
4	A New Intelligent Fusion Method of Multi-Dimensional Sensors and Its Application to Tribo-System Fault Diagnosis of Marine Diesel Engines. Tribology Letters, 2012, 47, 1-15.	1.2	58
5	Friction reduction and viscosity modification of cellulose nanocrystals as biolubricant additives in polyalphaolefin oil. Carbohydrate Polymers, 2019, 220, 228-235.	5.1	51
6	Study on influence of micro convex textures on tribological performances of UHMWPE material under the water-lubricated conditions. Wear, 2019, 426-427, 1327-1335.	1.5	48
7	Tribological behavior of aged UHMWPE under water-lubricated condition. Tribology International, 2019, 133, 1-11.	3.0	45
8	A review of online condition monitoring and maintenance strategy for cylinder liner-piston rings of diesel engines. Mechanical Systems and Signal Processing, 2022, 165, 108385.	4.4	45
9	Effects of different grain sized sands on wear behaviours of NBR/casting copper alloys. Wear, 2017, 384-385, 185-191.	1.5	44
10	Effect of spherical-convex surface texture on tribological performance of water-lubricated bearing. Tribology International, 2019, 134, 341-351.	3.0	41
11	Recent Progress on Mechanical Condition Monitoring and Fault Diagnosis. Procedia Engineering, 2011, 15, 142-146.	1.2	32
12	Effects of MoS2 microencapsulation on the tribological properties of a composite material in a water-lubricated condition. Wear, 2019, 432-433, 102919.	1.5	29
13	Study on tribological properties of a novel composite by filling microcapsules into UHMWPE matrix for water lubrication. Tribology International, 2021, 153, 106629.	3.0	29
14	Influence of polyethylene wax on wear resistance for polyurethane composite material under low speed water-lubricated conditions. Wear, 2019, 426-427, 1008-1017.	1.5	28
15	Tribological behavior of polymer composites functionalized with various microcapsule core materials. Wear, 2019, 426-427, 853-861.	1.5	27
16	Experimental Study on Wear Performance and Oil Film Characteristics of Surface Textured Cylinder Liner in Marine Diesel Engine. Chinese Journal of Mechanical Engineering (English Edition), 2018, 31, .	1.9	26
17	A strategy that combines a hydrogel and graphene oxide to improve the water-lubricated performance of ultrahigh molecular weight polyethylene. Composites Part A: Applied Science and Manufacturing, 2021, 141, 106207.	3.8	25
18	Friction properties of polyacrylamide hydrogel particle/HDPE composite under water lubrication. Polymer, 2019, 180, 121703.	1.8	24

#	Article	IF	CITATIONS
19	Effects of thread groove width in cylinder liner surface on performances of diesel engine. Wear, 2019, 426-427, 1296-1303.	1.5	23
20	Effect of crosslink on tribological performance of polyurethane bearing material. Tribology International, 2019, 136, 276-284.	3.0	23
21	Effects of spherical-platform texture parameters on the tribological performance of water-lubricated bearings. Wear, 2021, 477, 203863.	1.5	23
22	Tribological behaviors of composites reinforced by different functionalized carbon nanotube using molecular dynamic simulation. Wear, 2021, 476, 203669.	1.5	23
23	Effects of textured cylinder liner piston ring on performances of diesel engine under hot engine tests. Renewable and Sustainable Energy Reviews, 2021, 146, 111193.	8.2	23
24	Insight into the tribological performance of polyurethane composites under high temperature water lubrication. Tribology International, 2021, 155, 106784.	3.0	21
25	Application of Bionic Tribology in Water-Lubricated Bearing: A Review. Journal of Bionic Engineering, 2022, 19, 902-934.	2.7	21
26	Tribological behavior of co-textured cylinder liner-piston ring during running-in. Friction, 2022, 10, 878-890.	3.4	20
27	Designing soft/hard double network hydrogel microsphere/UHMWPE composites to promote water lubrication performance. Friction, 2021, 9, 551-568.	3.4	18
28	Condition Monitoring and Fault Diagnosis for Marine Diesel Engines using Information Fusion Techniques. Elektronika Ir Elektrotechnika, 2012, 123, .	0.4	18
29	Influence of Surface Groove Width on Tribological Performance for Cylinder Liner–Piston Ring Components. Tribology Transactions, 2019, 62, 239-248.	1.1	17
30	Study on the tribological properties of modified polyurethane material for waterâ€lubricated stern bearing. Journal of Applied Polymer Science, 2018, 135, 46305.	1.3	14
31	Surface texture processing for tribological performance improvement of UHMWPE-based water-lubricated bearings. Industrial Lubrication and Tribology, 2018, 70, 1341-1349.	0.6	14
32	3D Surface Characterizations of Wear Particles Generated from Lubricated Regular Concave Cylinder Liners. Tribology Letters, 2014, 55, 131-142.	1.2	13
33	Effect of modified glass fiber on tribological performance of water-lubricated bearing. Polymer Testing, 2020, 81, 106153.	2.3	12
34	Friction and wear behaviours of polyacrylamide hydrogel microsphere/UHMWPE composite under water lubrication. Wear, 2021, 477, 203841.	1.5	12
35	Effect of Material Hardness on Water Lubrication Performance of Thermoplastic Polyurethane under Sediment Environment. Journal of Materials Engineering and Performance, 2021, 30, 7532-7541.	1.2	11
36	Effect of polyester fiber orientation on the tribological properties of ultrahigh molecular weight polyethylene composites for water lubrication. Tribology International, 2021, 158, 106935.	3.0	10

#	Article	IF	CITATIONS
37	Study on the mechanical properties and defect detection of low alloy steel weldments for large cruise ships. Ocean Engineering, 2022, 258, 111815.	1.9	10
38	The influence of different surface textures on wears in cylinder liner piston rings. Surface Topography: Metrology and Properties, 2019, 7, 045011.	0.9	9
39	A Novel Hydrophilic PVA Fiber Reinforced Thermoplastic Polyurethane Materials for Water-lubricated Stern Bearing. Fibers and Polymers, 2021, 22, 171-183.	1.1	9
40	Insight into water lubrication performance of polyetheretherketone. Journal of Applied Polymer Science, 2021, 138, 49701.	1.3	8
41	Effect of weld defects on the mechanical properties of stainless-steel weldments on large cruise ship. Ocean Engineering, 2021, 235, 109385.	1.9	8
42	A comprehensive review on the material performance affected by gaseous alternative fuels in internal combustion engines. Engineering Failure Analysis, 2022, 139, 106507.	1.8	8
43	Marine CM: Condition identification of the cylinder liner-piston ring in a marine diesel engine using bispectrum analysis and artificial neural networks. Insight: Non-Destructive Testing and Condition Monitoring, 2013, 55, 621-626.	0.3	7
44	An experimental study on tribological properties and air tightness of co-textured cylinder liner-piston ring on an engine tester. Surface Topography: Metrology and Properties, 2021, 9, 015005.	0.9	7
45	Study on Identification Model of Cylinder Liner-Piston Ring Using Vibration Analysis Based on Fuzzy C-means Clustering. The Open Mechanical Engineering Journal, 2012, 6, 126-132.	0.3	7
46	Antiâ€friction and selfâ€repairing abilities of ultrafine serpentine, attapulgite and kaolin in oil for the cylinder linerâ€piston ring triboâ€systems. Lubrication Science, 0, , .	0.9	7
47	Effects of different surface grooved cylinder liner on the tribological performance for cylinder liner-piston ring components. Industrial Lubrication and Tribology, 2019, 72, 581-588.	0.6	6
48	An Improved Failure Risk Assessment Method for Bilge System of the Large Luxury Cruise Ship under Fire Accident Conditions. Journal of Marine Science and Engineering, 2021, 9, 957.	1.2	6
49	Feasibility study of an integrated air source heat pump water heater/chillers and exhaust gas boiler heating system for swimming pool on luxury cruise ship. Energy Reports, 2022, 8, 1260-1282.	2.5	6
50	Development of modified polyacrylonitrile fibers for improving tribological performance characteristics of thermoplastic polyurethane material in waterâ€lubricated sliding bearings. Polymers for Advanced Technologies, 2020, 31, 3258-3271.	1.6	5
51	Molecular dynamics simulation study of wear-resistant mechanism of UHMWPE composites reinforced by CNTs with different configuration directions. Materials Today Communications, 2021, 28, 102541.	0.9	5
52	Investigating the water lubrication characteristics of sisal fiber reinforced ultrahigh â€molecularâ€weight polyethylene material. Polymer Composites, 2020, 41, 5269-5280.	2.3	4
53	Effects of solid lubricants on the tribological behavior of steelâ€backed UHMWPE fabric composites. Journal of Applied Polymer Science, 0, , 51674.	1.3	4
54	Effect of grooved cylinder liner depths on the tribological performances of cylinder liner-piston ring. Industrial Lubrication and Tribology, 2019, 72, 465-471.	0.6	3

#	Article	IF	CITATIONS
55	Insight into friction and lubrication performances of surface-textured cylinder liners and piston rings. International Journal of Engine Research, 0, , 146808742110502.	1.4	3
56	Application Research of Classical and Advanced Filtering Techniques in Condition Monitoring and Fault Diagnosis. Procedia Engineering, 2011, 15, 183-187.	1.2	2
57	Tribological Properties of Aramid Fiber-Microcapsule Modified Ultra-high Molecular Weight Polyethylene Composites for Water Lubrication. Journal of Materials Engineering and Performance, 0, , 1.	1.2	2
58	An Investigation into Water Lubrication Performance of UHMWPE Reinforced with Oriented Polyester Fiber of Different Densities. Fibers and Polymers, 0, , 1.	1.1	2
59	A Novel Finding of Tribological and Mechanical Linking to Microâ€Convex Texture on Hydrophilic Composites Surface under Waterâ€Lubricating Conditions. Macromolecular Materials and Engineering, 2022, 307, .	1.7	1
60	Effects of large process structure of cylinder liner on friction of cylinder liner-piston ring. , 2011, , .		0
61	Expert Weight Allocation for Diesel Engine Condition Identification Based on Entropy Theory and		Ο