Michele Ennio Maria Ennio Maria Mores

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6040408/publications.pdf

Version: 2024-02-01

72 papers

5,459 citations

34 h-index 70 g-index

72 all docs

72 docs citations

times ranked

72

3390 citing authors

#	Article	IF	CITATIONS
1	<i>Euclid</i> : Constraining ensemble photometric redshift distributions with stacked spectroscopy. Astronomy and Astrophysics, 2022, 660, A9.	5.1	2
2	<i>Euclid</i> : Forecast constraints on consistency tests of the \hat{I} CDM model. Astronomy and Astrophysics, 2022, 660, A67.	5.1	10
3	A combined VANDELS and LEGA-C study: the evolution of quiescent galaxy size, stellar mass, and age from $\langle i\rangle z\langle i\rangle = 0.6$ to $\langle i\rangle z\langle i\rangle = 1.3$. Monthly Notices of the Royal Astronomical Society, 2022, 512, 1262-1274.	4.4	15
4	Toward a Better Understanding of Cosmic Chronometers: Stellar Population Properties of Passive Galaxies at Intermediate Redshift. Astrophysical Journal, 2022, 927, 164.	4.5	16
5	Toward a Better Understanding of Cosmic Chronometers: A New Measurement of H(z) at z â^1/4 0.7. Astrophysical Journal Letters, 2022, 928, L4.	8.3	57
6	Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies. Journal of High Energy Astrophysics, 2022, 34, 49-211.	6.7	350
7	<i>Euclid</i> preparation. Astronomy and Astrophysics, 2022, 662, A112.	5.1	106
8	Eppur $\tilde{A}^{"}$ piatto? The Cosmic Chronometers Take on Spatial Curvature and Cosmic Concordance. Astrophysical Journal, 2021, 908, 84.	4.5	112
9	<i>Euclid</i> preparation. Astronomy and Astrophysics, 2021, 647, A117.	5.1	7
10	The VANDELS ESO public spectroscopic survey. Astronomy and Astrophysics, 2021, 647, A150.	5.1	46
11	<i>Euclid</i> preparation: IX. EuclidEmulator2 – power spectrum emulation with massive neutrinos and self-consistent dark energy perturbations. Monthly Notices of the Royal Astronomical Society, 2021, 505, 2840-2869.	4.4	62
12	A joint 2- and 3-point clustering analysis of the VIPERS PDR2 catalogue at $\langle i \rangle z \langle i \rangle$ $\hat{a}^1/4$ 1: breaking the degeneracy of cosmological parameters. Monthly Notices of the Royal Astronomical Society, 2021, 507, 1184-1201.	4.4	5
13	Euclid Preparation. XIV. The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Data Release 3. Astrophysical Journal, Supplement Series, 2021, 256, 9.	7.7	11
14	C ³ : Cluster Clustering Cosmology. ii. First Detection of the Baryon Acoustic Oscillations Peak in the Three-point Correlation Function of Galaxy Clusters. Astrophysical Journal, 2021, 919, 144.	4.5	9
15	Euclid: the selection of quiescent and star-forming galaxies using observed colours. Monthly Notices of the Royal Astronomical Society, 2020, 494, 2337-2354.	4.4	9
16	<i>Euclid</i> preparation. Astronomy and Astrophysics, 2020, 635, A139.	5.1	15
17	<i>Euclid</i> preparation. Astronomy and Astrophysics, 2020, 642, A191.	5.1	194
18	<i>Euclid</i> preparation. Astronomy and Astrophysics, 2020, 642, A192.	5.1	15

#	Article	IF	Citations
19	<i>Euclid</i> preparation. Astronomy and Astrophysics, 2020, 644, A31.	5.1	39
20	Setting the Stage for Cosmic Chronometers. II. Impact of Stellar Population Synthesis Models Systematics and Full Covariance Matrix. Astrophysical Journal, 2020, 898, 82.	4.5	66
21	Euclid preparation. Astronomy and Astrophysics, 2020, 638, C2.	5.1	1
22	Spatially resolved signature of quenching in star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2347-2366.	4.4	7
23	<i>Euclid</i> preparation. Astronomy and Astrophysics, 2019, 631, A85.	5.1	40
24	The local and distant Universe: stellar ages and <i>H</i> _O . Journal of Cosmology and Astroparticle Physics, 2019, 2019, 043-043.	5.4	48
25	Setting the Stage for Cosmic Chronometers. I. Assessing the Impact of Young Stellar Populations on Hubble Parameter Measurements. Astrophysical Journal, 2018, 868, 84.	4.5	53
26	An improved model-independent assessment of the late-time cosmic expansion. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 015-015.	5.4	89
27	The VANDELS ESO public spectroscopic survey: Observations and first data release. Astronomy and Astrophysics, 2018, 616, A174.	5.1	93
28	Galaxies in the act of quenching star formation. Monthly Notices of the Royal Astronomical Society, 2018, 478, 3335-3355.	4.4	5
29	Automated reliability assessment for spectroscopic redshift measurements. Astronomy and Astrophysics, 2018, 611, A53.	5.1	3
30	Ultra-narrow-linewidth erbium-doped lasers on a silicon photonics platform., 2018,,.		0
31	In and out star formation in <i>z</i> ~ 1.5 quiescent galaxies from rest-frame UV spectroscopy and the far-infrared. Astronomy and Astrophysics, 2017, 599, A95.	5.1	21
32	Reliable Integrated Photonic Light Sources Using Curved Al2O3:Er3+ Distributed Feedback Lasers. IEEE Photonics Journal, 2017, 9, 1-9.	2.0	3
33	A methodology to select galaxies just after the quenching of star formation. Monthly Notices of the Royal Astronomical Society, 2017, 469, 3108-3124.	4.4	10
34	Cosmological constraints from a joint analysis of cosmic growth and expansion. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 471, L82-L86.	3.3	27
35	Wavelength division multiplexed light source monolithically integrated on a silicon photonics platform. Optics Letters, 2017, 42, 1772.	3.3	32
36	Ultra-narrow-linewidth Al_2O_3:Er^3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform. Optics Express, 2017, 25, 13705.	3.4	40

#	Article	IF	CITATIONS
37	On the robustness of the $H\hat{l}^2$ Lick index as a cosmic clock in passive early-type galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 468, 1747-1759.	4.4	9
38	The VIMOS Public Extragalactic Redshift Survey (VIPERS). Astronomy and Astrophysics, 2017, 604, A133.	5.1	14
39	Constraining the time evolution of dark energy, curvature and neutrino properties with cosmic chronometers. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 039-039.	5.4	47
40	Inferring the star-formation histories of the most massive and passive early-type galaxies at <i>z</i> < 0.3. Astronomy and Astrophysics, 2016, 592, A19.	5.1	46
41	A 6% measurement of the Hubble parameter at $z\hat{a}^{1}/40.45$: direct evidence of the epoch of cosmic re-acceleration. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 014-014.	5.4	646
42	CosmoBolognaLib: C++ libraries for cosmological calculations. Astronomy and Computing, 2016, 14, 35-42.	1.7	52
43	Resonant pumped erbium-doped waveguide lasers using distributed Bragg reflector cavities. Optics Letters, 2016, 41, 1189.	3.3	41
44	Measuring the distance–redshift relation with the baryon acoustic oscillations of galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2016, 458, 1909-1920.	4.4	25
45	Old age and supersolar metallicity in a massive (i>zsâ^1/4 1.4 early-type galaxy from VLT/X-Shooter spectroscopy. Monthly Notices of the Royal Astronomical Society, 2015, 454, 3912-3919.	4.4	32
46	Raising the bar: new constraints on the Hubble parameter with cosmic chronometers at <i>z</i> Ââ^1/4Â2. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 450, L16-L20.	3.3	554
47	Passive galaxies as tracers of cluster environments at $i \ge z < i \ge -2$. Astronomy and Astrophysics, 2015, 576, L6.	5.1	22
48	The zCOSMOS redshift survey: evolution of the light in bulges and discs since $\langle i \rangle z \langle i \rangle \sim 0.8$. Astronomy and Astrophysics, 2014, 564, L12.	5.1	10
49	Disentangling interacting dark energy cosmologies with the three-point correlation function. Monthly Notices of the Royal Astronomical Society, 2014, 443, 2874-2886.	4.4	17
50	zCOSMOS 20k: satellite galaxies are the main drivers of environmental effects in the galaxy population at least to z â^1/4 0.7. Monthly Notices of the Royal Astronomical Society, 2014, 438, 717-738.	4.4	78
51	An improved measurement of baryon acoustic oscillations from the correlation function of galaxy clusters at z \hat{a}^4 0.3. Monthly Notices of the Royal Astronomical Society, 2014, 442, 3275-3283.	4.4	32
52	THE DEPENDENCE OF GALACTIC OUTFLOWS ON THE PROPERTIES AND ORIENTATION OF zCOSMOS GALAXIES AT <i>z</i> 1 /4 1. Astrophysical Journal, 2014, 794, 130.	4.5	98
53	THE COLORS OF CENTRAL AND SATELLITE GALAXIES IN zCOSMOS OUT TO <i>z < /i> \hat{a} 0.8 AND IMPLICATIONS FOR QUENCHING. Astrophysical Journal, 2013, 769, 24.</i>	4.5	48
54	Spot the difference. Astronomy and Astrophysics, 2013, 558, A61.	5.1	69

#	Article	IF	CITATIONS
55	PROTO-GROUPS AT 1.8 < <i>z</i> < 3 IN THE zCOSMOS-DEEP SAMPLE. Astrophysical Journal, 2013, 765, 109.	4.5	48
56	Investigating the relationship between AGN activity and stellar mass in zCOSMOS galaxies at O < <i>z</i> à€‱< 1 using emission-line diagnostic diagrams. Astronomy and Astrophysics, 20)13 ^{5, 1} 556, A	\11 ⁴
57	Obscured AGN at <i>z</i> ~ 1 from the zCOSMOS-Bright Survey. Astronomy and Astrophysics, 2013, 55 A29.	56 _{5.1}	44
58	X-Ray Groups of Galaxies at 0.5 1 in zCOSMOS: Increased AGN Activities in High Redshift Groups. Publication of the Astronomical Society of Japan, 2012, 64, .	2.5	15
59	The effective Lagrangian of dark energy from observations. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 014-014.	5.4	11
60	Improved constraints on the expansion rate of the Universe up to z $\hat{a}^{1}/4$ 1.1 from the spectroscopic evolution of cosmic chronometers. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 006-006.	5.4	581
61	New constraints on cosmological parameters and neutrino properties using the expansion rate of the Universe to $\langle i \rangle z \langle i \rangle \hat{a}^1 / 1.75$. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 053-053.	5.4	203
62	The dominant role of mergers in the size evolution of massive early-type galaxies since <i>z</i> \hat{A} - \hat{A} 1. Astronomy and Astrophysics, 2012, 548, A7.	5.1	116
63	THE zCOSMOS 20k GROUP CATALOG. Astrophysical Journal, 2012, 753, 121.	4.5	88
64	A journey from the outskirts to the cores of groups. Astronomy and Astrophysics, 2012, 539, A55.	5.1	35
65	A GROUP-GALAXY CROSS-CORRELATION FUNCTION ANALYSIS IN zCOSMOS. Astrophysical Journal, 2012, 755, 48.	4.5	12
66	The COSMOS density field: a reconstruction using both weak lensing and galaxy distributions. Monthly Notices of the Royal Astronomical Society, 2012, 424, 553-563.	4.4	14
67	THE RADIAL AND AZIMUTHAL PROFILES OF Mg II ABSORPTION AROUND 0.5 < <i>z</i> < 0.9 zCOSMOS GALAXIES OF DIFFERENT COLORS, MASSES, AND ENVIRONMENTS. Astrophysical Journal, 2011, 743, 10.	4.5	245
68	Constraining the expansion rate of the Universe using low-redshift ellipticals as cosmic chronometers. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 045-045.	5.4	43
69	zCOSMOS 10k-bright spectroscopic sample. Astronomy and Astrophysics, 2010, 524, A67.	5.1	33
70	zCOSMOS – 10k-bright spectroscopic sample. Astronomy and Astrophysics, 2010, 523, A13.	5.1	354
71	The zCOSMOS survey: the role of the environment in the evolution of the luminosity function of different galaxy types. Astronomy and Astrophysics, 2009, 508, 1217-1234.	5.1	66
72	The VANDELS ESO public spectroscopic survey. Monthly Notices of the Royal Astronomical Society, 0, ,	4.4	79