Guangcai Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6040343/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. European Journal of Soil Biology, 2016, 74, 1-8.	1.4	839
2	Sorption of mercury (II) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution. Bioresource Technology, 2016, 211, 727-735.	4.8	286
3	Resource recovery microbial fuel cells for urine-containing wastewater treatment without external energy consumption. Chemical Engineering Journal, 2019, 373, 1072-1080.	6.6	80
4	Pseudocapacitive Behaviors of Polypyrrole Grafted Activated Carbon and MnO ₂ Electrodes to Enable Fast and Efficient Membrane-Free Capacitive Deionization. Environmental Science & Technology, 2020, 54, 5843-5852.	4.6	67
5	A comparative study of arsenic(V), tetracycline and nitrate ions adsorption onto magnetic biochars and activated carbon. Chemical Engineering Research and Design, 2020, 159, 582-591.	2.7	62
6	Enhanced power generation and wastewater treatment in sustainable biochar electrodes based bioelectrochemical system. Bioresource Technology, 2017, 241, 841-848.	4.8	51
7	Biochar amendment with fertilizers increases peanut N uptake, alleviates soil N2O emissions without affecting NH3 volatilization in field experiments. Environmental Science and Pollution Research, 2018, 25, 8817-8826.	2.7	44
8	Vegetable yields and soil biochemical properties as influenced by fertilization in Southern China. Applied Soil Ecology, 2016, 107, 170-181.	2.1	31
9	Comparison of biochar- and activated carbon-supported zerovalent iron for the removal of Se(IV) and Se(VI): influence of pH, ionic strength, and natural organic matter. Environmental Science and Pollution Research, 2019, 26, 21609-21618.	2.7	28
10	Influence of biochar on sorption, leaching and dissipation of bisphenol A and 17α-ethynylestradiol in soil. Environmental Sciences: Processes and Impacts, 2015, 17, 1722-1730.	1.7	19
11	Carbonized peat moss electrodes for efficient salinity gradient energy recovery in a capacitive concentration flow cell. Electrochimica Acta, 2019, 294, 240-248.	2.6	19
12	Polyelectrolyte oated Copper Hexacyanoferrate and Bismuth Oxychloride Electrodes for Efficient Salinity Gradient Energy Recovery in Capacitive Mixing. Energy Technology, 2020, 8, 1900863.	1.8	18
13	Concentration Flow Cells for Efficient Salinity Gradient Energy Recovery with Nanostructured Open Framework Hexacyanoferrate Electrodes. ChemistrySelect, 2018, 3, 5571-5580.	0.7	17
14	Chloride-ion concentration flow cells for efficient salinity gradient energy recovery with bismuth oxychloride electrodes. Electrochimica Acta, 2019, 322, 134724.	2.6	16
15	Effects of biochar application with fertilizer on soil microbial biomass and greenhouse gas emissions in a peanut cropping system. Environmental Technology (United Kingdom), 2021, 42, 9-19.	1.2	16
16	Effects of lead concentration and accumulation on the performance and microbial community of aerobic granular sludge in sequencing batch reactors. Environmental Technology (United Kingdom), 2016, 37, 2905-2915.	1.2	10
17	Concentration Flow Cells Based on Chloride-Ion Extraction and Insertion with Metal Chloride Electrodes for Efficient Salinity Gradient Energy Harvest. ACS Sustainable Chemistry and Engineering, 2018, 6, 15212-15218.	3.2	8
18	Mo2N nanobelt cathodes for efficient hydrogen production in microbial electrolysis cells with shaped biofilm microbiome. Biosensors and Bioelectronics, 2020, 167, 112491.	5.3	8

#	Article	IF	CITATIONS
19	Facile Designed Manganese Oxide/Biochar for Efficient Salinity Gradient Energy Recovery in Concentration Flow Cells and Influences of Mono/Multivalent Ions. ACS Applied Materials & Interfaces, 2021, 13, 19855-19863.	4.0	5
20	H2 Evolution Catalysts for Microbial Electrolysis Cells. ACS Symposium Series, 2020, , 27-43.	0.5	2
21	Special engines. , 2022, , 265-318.		0