Jonathan B Snively

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6040266/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga. Science, 2022, 377, 95-100.	6.0	170
2	lonospheric signatures of Tohokuâ€Oki tsunami of March 11, 2011: Model comparisons near the epicenter. Radio Science, 2012, 47, .	0.8	134
3	Breaking of thunderstorm-generated gravity waves as a source of short-period ducted waves at mesopause altitudes. Geophysical Research Letters, 2003, 30, .	1.5	90
4	Excitation of ducted gravity waves in the lower thermosphere by tropospheric sources. Journal of Geophysical Research, 2008, 113, .	3.3	75
5	Ionospheric response to infrasonicâ€acoustic waves generated by natural hazard events. Journal of Geophysical Research: Space Physics, 2015, 120, 8002-8024.	0.8	75
6	Thermospheric dissipation of upward propagating gravity wave packets. Journal of Geophysical Research: Space Physics, 2014, 119, 3857-3872.	0.8	55
7	Secondary gravity wave generation over New Zealand during the DEEPWAVE campaign. Journal of Geophysical Research D: Atmospheres, 2017, 122, 7834-7850.	1.2	44
8	lonospheric signatures of acoustic waves generated by transient tropospheric forcing. Geophysical Research Letters, 2013, 40, 5345-5349.	1.5	43
9	Secondary Gravity Waves Generated by Breaking Mountain Waves Over Europe. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031662.	1.2	43
10	Selfâ€acceleration and instability of gravity wave packets: 1. Effects of temporal localization. Journal of Geophysical Research D: Atmospheres, 2015, 120, 8783-8803.	1.2	39
11	Analysis and modeling of ducted and evanescent gravity waves observed in the Hawaiian airglow. Annales Geophysicae, 2009, 27, 3213-3224.	0.6	36
12	Mesospheric hydroxyl airglow signatures of acoustic and gravity waves generated by transient tropospheric forcing. Geophysical Research Letters, 2013, 40, 4533-4537.	1.5	36
13	Gravity wave propagation through a vertically and horizontally inhomogeneous background wind. Journal of Geophysical Research D: Atmospheres, 2015, 120, 5931-5950.	1.2	34
14	Numerical modeling of a multiscale gravity wave event and its airglow signatures over Mount Cook, New Zealand, during the DEEPWAVE campaign. Journal of Geophysical Research D: Atmospheres, 2017, 122, 846-860.	1.2	33
15	OH and OI airglow layer modulation by ducted shortâ€period gravity waves: Effects of trapping altitude. Journal of Geophysical Research, 2010, 115, .	3.3	32
16	Nonlinear ionospheric responses to largeâ€amplitude infrasonicâ€acoustic waves generated by undersea earthquakes. Journal of Geophysical Research: Space Physics, 2017, 122, 2272-2291.	0.8	32
17	Doppler ducting of short-period gravity waves by midlatitude tidal wind structure. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	29
18	Latitude and Longitude Dependence of Ionospheric TEC and Magnetic Perturbations From Infrasonicâ€Acoustic Waves Generated by Strong Seismic Events. Geophysical Research Letters, 2019, 46, 1132-1140.	1.5	29

JONATHAN B SNIVELY

#	Article	IF	CITATIONS
19	Evidence of dispersion and refraction of a spectrally broad gravity wave packet in the mesopause region observed by the Na lidar and Mesospheric Temperature Mapper above Logan, Utah. Journal of Geophysical Research D: Atmospheres, 2016, 121, 579-594.	1.2	26
20	Very low frequency subionospheric remote sensing of thunderstormâ€driven acoustic waves in the lower ionosphere. Journal of Geophysical Research D: Atmospheres, 2014, 119, 5037-5045.	1.2	24
21	Antiphase OH and OI airglow emissions induced by a short-period ducted gravity wave. Geophysical Research Letters, 2005, 32, .	1.5	18
22	Nonlinear Gravity Wave Forcing as a Source of Acoustic Waves in the Mesosphere, Thermosphere, and Ionosphere. Geophysical Research Letters, 2017, 44, 12,020.	1.5	16
23	Numerical simulation of the longâ€range propagation of gravity wave packets at high latitudes. Journal of Geophysical Research D: Atmospheres, 2014, 119, 11,116.	1.2	15
24	Momentum Flux Spectra of a Mountain Wave Event Over New Zealand. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9980-9991.	1.2	15
25	Numerical and statistical evidence for longâ€range ducted gravity wave propagation over Halley, Antarctica. Geophysical Research Letters, 2013, 40, 4813-4817.	1.5	14
26	The Dynamics of Nonlinear Atmospheric Acousticâ€Gravity Waves Generated by Tsunamis Over Realistic Bathymetry. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028309.	0.8	14
27	Unexpected Occurrence of Mesospheric Frontal Gravity Wave Events Over South Pole (90°S). Journal of Geophysical Research D: Atmospheres, 2018, 123, 160-173.	1.2	13
28	Numerical Modeling of the Propagation of Infrasonic Acoustic Waves Through the Turbulent Field Generated by the Breaking of Mountain Gravity Waves. Geophysical Research Letters, 2019, 46, 5526-5534.	1.5	12
29	Multilayer Observations and Modeling of Thunderstormâ€Generated Gravity Waves Over the Midwestern United States. Geophysical Research Letters, 2019, 46, 14164-14174.	1.5	12
30	Modeling of Ionospheric Responses to Atmospheric Acoustic and Gravity Waves Driven by the 2015 Nepal 7.8 Gorkha Earthquake. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027200.	0.8	12
31	Observation and modeling of gravity wave propagation through reflection and critical layers above Andes Lidar Observatory at Cerro Pachón, Chile. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,737.	1.2	11
32	Inferring the Evolution of a Large Earthquake From Its Acoustic Impacts on the Ionosphere. AGU Advances, 2021, 2, e2020AV000260.	2.3	11
33	Primary Versus Secondary Gravity Wave Responses at Fâ€Region Heights Generated by a Convective Source. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	10
34	Localization Effects on the Dissipation of Gravity Wave Packets in the Upper Mesosphere and Lower Thermosphere. Journal of Geophysical Research D: Atmospheres, 2018, 123, 8915-8935.	1.2	8
35	Near-Infrared Spectroscopy of Hayabusa Sample Return Capsule Reentry. Journal of Spacecraft and Rockets, 2014, 51, 424-429.	1.3	6
36	Modulation of Lowâ€Altitude Ionospheric Upflow by Linear and Nonlinear Atmospheric Gravity Waves. Journal of Geophysical Research: Space Physics, 2018, 123, 7650-7667.	0.8	6

JONATHAN B SNIVELY

#	Article	IF	CITATIONS
37	Mesopause Airglow Disturbances Driven by Nonlinear Infrasonic Acoustic Waves Generated by Large Earthquakes. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027628.	0.8	6
38	Airborne imaging and NIR spectroscopy of the ESA ATV spacecraft re-entry: instrument design and preliminary data description. International Journal of Remote Sensing, 2011, 32, 3019-3027.	1.3	5
39	An analysis of the atmospheric propagation of underground-explosion-generated infrasonic waves based on the equations of fluid dynamics: Ground recordings. Journal of the Acoustical Society of America, 2019, 146, 4576-4591.	0.5	4
40	Evidence for Horizontal Blocking and Reflection of a Small‣cale Gravity Wave in the Mesosphere. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031828.	1.2	4
41	Gravity Wave Ducting Observed in the Mesosphere Over Jicamarca, Peru. Journal of Geophysical Research D: Atmospheres, 2019, 124, 5166-5177.	1.2	3
42	A Comparison of Small―and Mediumâ€Scale Gravity Wave Interactions in the Linear and Nonlinear Limits. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2454-2474.	1.2	2
43	Simulation of Infrasonic Acoustic Wave Imprints on Airglow Layers During the 2016 M7.8 Kaikoura Earthquake. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	1
44	Correction to "Breaking of thunderstorm-generated gravity waves as a source of short-period ducted waves at mesopause altitudes― Geophysical Research Letters, 2004, 31, .	1.5	0